Fitoremediasi Logam Berat Merkuri (Hg) Menggunakan Tanaman Myriophyllum aquaticum dengan Sistem Batch

Mufidatun Wafiq, Ida Munfarida

Abstract


Merkuri atau air raksa (Hg) adalah logam murni yang merupakan satu-satunya logam paling berbahaya diantara logam berat lainnya. Salah satu cara pengolahan limbah yang dapat dilakukan secara biologi adalah penggunaan media tanam yang disebut dengan fitoremediasi. Salah satu tanaman yang mampu meremediasi limbah adalah Myriophyllum aquaticum tanaman yang mampu meremediasi limbah serta mampu mentolerir empat logam berat yakni Zn, Cu, Fe, dan Hg dari air yang terkontaminasi. Tujuan dari penelitian ini adalah untuk mengetahui kondisi morfologi (akar, batang, dan daun) berdasarkan pengamatan langsung ciri fisik tanaman Myriophyllum aquaticum selama fitoremediasi berlangsung, serta nilai efisiensi removal logam berat merkuri pada fitoremediasi dengan tanaman Myriophyllum aquaticum. Metode dalam penelitian ini menggunakan metode eksperimental dengan menggunakan variasi konsentrasi sebesar 4,20 mg/L dan 9,62 mg/L, jumlah reaktor yang digunakan sebanyak 6 reaktor secara dua kali pengulangan, selama fitoremediasi berlangsung dilakukan pengukuran pH, suhu, dan konsentrasi. Hasil peneitian ini menunjukkan bahwa tanaman mengalami perubahan warna menjadi coklat dan hitam pada  reaktor A dan reaktor B  baik dari daun maupun batang terjadi pada hari ke-19 fitoremediasi.  Nilai efisiensi pada reaktor 3 dengan konsentrasi 4,20 mg/L (perlakuan 18 tanaman) memiliki nilai tertinggi pada hari pengambilan sampel ke-14 sebesar 87,8%.

Keywords


Merkuri (Hg); Fitoremediasi; Myriophyllum aquaticum; sistem batch; variasi konsentrasi.

Full Text:

PDF

References


Ali, S. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/su12051927

Ambarsari, H., & Qisthi, A. (2017a). Remediasi Merkuri (Hg) pada Air Limbah Tambang Emas Rakyat dengan Metode Lahan Basah Buatan Terpadu. Jurnal Teknologi Lingkungan , 18(2), 148–156.

Ambarsari, H., & Qisthi, A. (2017b). Remediasi Merkuri (Hg) pada Air Limbah Tambang Emas Rakyat dengan Metode Lahan Basah Buatan Terpadu. Jurnal Teknologi Lingkungan, 18(2), 148–156.

Ashraf, S. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicology and Environmental Safety, 174, 714–727. https://doi.org/10.1016/j.ecoenv.2019.02.068

Awa, S. H. (2020). Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review. Water, Air, and Soil Pollution, 231(2). https://doi.org/10.1007/s11270-020-4426-0

Bian, F. (2020). Bamboo – An untapped plant resource for the phytoremediation of heavy metal contaminated soils. Chemosphere, 246. https://doi.org/10.1016/j.chemosphere.2019.125750

Burges, A. (2018). From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. International Journal of Phytoremediation, 20(4), 384–397. https://doi.org/10.1080/15226514.2017.1365340

Cahyani, P. P. A., Hakam, F., & Nurbaya, F. (2020). EVALUASI PENERAPAN SISTEM INFORMASI MANAJEMEN PUSKESMAS (SIMPUS) DENGAN METODE HOT-FIT DI PUSKESMAS GATAK. Jurnal Manajemen Informasi Dan Administrasi Kesehatan, 03(02), 20–26.

DalCorso, G. (2019). Heavy metal pollutions: State of the art and innovation in phytoremediation. International Journal of Molecular Sciences, 20(14). https://doi.org/10.3390/ijms20143412

Dulanlebit, Y. H., Unwakoly, S., & Sangadji, R. P. (2021). Studi Potensi Pteris vitata, Amaranthus spinosus, Ipomoea reptanspoir Sebagai Fitoremediator Tanah Tercemar Merkuri (Hg). Molluca Journal of Chemistry Education, 11(1), 32–38.

Gong, X. (2018). Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: For heavy metals stabilization and dye adsorption. Bioresource Technology, 253, 64–71. https://doi.org/10.1016/j.biortech.2018.01.018

Harguinteguy, C. A., Schreiber, R., & Pignata, M. L. (2013). Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecological Indicators, 27, 8–16. https://doi.org/10.1016/j.ecolind.2012.11.018

Jiang, C., Xu, S., Wang, R., Sun, Q., Zuo, J., & Zhuang, X. (2023). Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum. International Journal of Molecular Sciences, 24(5). https://doi.org/10.3390/ijms24054874

Koźmińska, A. (2018). Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants. Plant Biotechnology Reports, 12(1). https://doi.org/10.1007/s11816-017-0467-2

Kuswantoro, F. (2020). Conservation, Phytoremediation Potential and Invasiveness Status of Bali Botanic Garden Aquatic Plant Collection. Journal of Tropical Biodiversity and Biotechnology, 5(1), 16–26. https://doi.org/10.22146/jtbb.49312

Lin, H. (2021). Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials, 402. https://doi.org/10.1016/j.jhazmat.2020.123829

Ma, Y. (2019). Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. Journal of Hazardous Materials, 379. https://doi.org/10.1016/j.jhazmat.2019.120813

Mahmud, J. A. (2018). Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: Coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicology and Environmental Safety, 147, 990–1001. https://doi.org/10.1016/j.ecoenv.2017.09.045

Manoj, S. R. (2020). Understanding the molecular mechanisms for the enhanced phytoremediation of heavy metals through plant growth promoting rhizobacteria: A review. Journal of Environmental Management, 254. https://doi.org/10.1016/j.jenvman.2019.109779

Maulana, R., & Marsono, D. B. (2021). Penerapan Teknologi Membran untuk Mengolah Limbah Cair Industri Tahu (Studi Kasus : UKM Sari Bumi, Kabupaten). Jurnal Teknik ITS, 10(2), 54–60.

Mildaerizanti, & Pangestuti, R. (2016). PENGARUH CEKAMAN SUHU RENDAH TERHADAP TANAMAN. 185–193.

Muthusaravanan, S. (2018). Phytoremediation of heavy metals: mechanisms, methods and enhancements. Environmental Chemistry Letters, 16(4), 1339–1359. https://doi.org/10.1007/s10311-018-0762-3

Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3(3). https://doi.org/10.1007/s42452-021-04301-4

Novita, E., Arunggi Gaumanda Hermawan, A., & Wahyuningsih, S. (2019). KOMPARASI PROSES FITOREMEDIASI LIMBAH CAIR PEMBUATAN TEMPE MENGGUNAKAN TIGA JENIS TANAMAN AIR. 13(01), 16–24.

Nurlina, Suhadiyah, S., & Umar, R. M. (2016a). Akumulasi Logam Berat Besi (Fe) Pada Kiapu Pistia stratiotes L. dari Air Sumur Sekitar Workshop Unhas. Basic Science to Comprehensive Education, 151–155.

Nurlina, Suhadiyah, S., & Umar, R. M. (2016b). Akumulasi Logam Berat Besi (Fe) Pada Kiapu Pistia stratiotes L. dari Air Sumur Sekitar Workshop Unhas. Basic Science to Comprehensive Edication, 151–155.

Oktavia, Z., Dewanti, A. Y., Bagian Kesehatan Lingkungan, N., & Kesehatan, F. (2016). PENGARUH VARIASI LAMA KONTAK FITOREMEDIASI TANAMAN KIAMBANG (SALVINIA MOLESTA) TERHADAP KADAR KADMIUM (Cd) PADA LIMBAH CAIR HOME INDUSTRY BATIK “X” MAGELANG. Jurnal Kesehatan Masyarakat, 4(5), 2356–3346. http://ejournal-s1.undip.ac.id/index.php/jkm

Oladoye, P. O. (2022). Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. Chemosphere, 288. https://doi.org/10.1016/j.chemosphere.2021.132555

Saxena, G. (2020). Phytoremediation of heavy metal-contaminated sites: Eco-environmental concerns, field studies, sustainability issues, and future prospects. Reviews of Environmental Contamination and Toxicology, 249, 71–131. https://doi.org/10.1007/398_2019_24

Shah, V. (2020). Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology and Innovation, 18. https://doi.org/10.1016/j.eti.2020.100774

Sharma, P. (2021). Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. Bioresource Technology, 328. https://doi.org/10.1016/j.biortech.2021.124835

Soheti, P., Sumarlin, L. O., & Marisi, D. P. (2020). Fitoremediasi Limbah Radioaktif Cair Menggunakan Kayu Apu (Pistia stratiotes) Untuk Menurunkan Kadar Torium. EKSPLORIUM, 41(2), 139. https://doi.org/10.17146/eksplorium.2020.41.2.6092

Yan, A. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00359

Yulianto, R. M., Safitri, E., Sintya, I., Savira, W., Fitrihidajati, H., Rachmardiarti, F., & Lailani, I. (2021). Kemampuan Enceng Gondok (Eichhornia crassipes) Sebagai Agen Fitoremediasi LAS (Linier Alkyl Benzene Sulphonate) Detergen. Prosiding SEMNAS BIO, 952–960.

Yulita, Winardi, & Jumiati. (2022). Remediasi Air Tercemar Merkuri Menggunakan Purun Tikus (Eleocharis Dulcis) Pada Lahan Basah Buatan. Jurnal Reka Lingkungan, 10(3), 212–221.




DOI: https://doi.org/10.31315/jilk.v6i1.10210

DOI (PDF): https://doi.org/10.31315/jilk.v6i1.10210.g6085

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Jurnal Ilmiah Lingkungan Kebumian

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Editorial Office;

Program Studi Teknik Lingkungan, Fakultas Teknologi Mineral, UPN “Veteran” Yogyakarta.
Jl. SWK 104 (Lingkar Utara) Condongcatur, Sleman, Yogyakarta 55283
Telp./ Fax. (0274) 486400, Email:jurnaltl@upnyk.ac.id

Creative Commons License
Jurnal Ilmiah Lingkungan Kebumian is licensed under a Creative Commons Attribution 4.0 International License.