Review: Biomassa Sebagai Adsorbent untuk Pengolahan Logam Berat Pada Air Limbah Industri
Abstract
Keywords
Full Text:
PDFReferences
Abas, S. N. A., Ismail, M. H. S., Kamal, M. L., & Izhar, S. (2013). Adsorption process of heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28(11), 1518–1530. https://doi.org/10.5829/idosi.wasj.2013.28.11.1874
Al-Majed, A. A., Adebayo, A. R., & Hossain, M. E. (2012). A sustainable approach to controlling oil spills. Journal of Environmental Management, 113(November 2020), 213–227. https://doi.org/10.1016/j.jenvman.2012.07.034
Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids and Surfaces B: Biointerfaces, 63(1), 116–121. https://doi.org/10.1016/j.colsurfb.2007.11.013
Babel, S., & Omega, A. (2003). Various treatment technologies to remove arsenic and mercury from contaminated groundwater: An overview. Proceedings of the First International Symposium on Southeast Asian Water Environment, 433–440.
Bose, P., Aparna Bose, M., & Kumar, S. (2002). Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Advances in Environmental Research, 7(1), 179–195. https://doi.org/10.1016/S1093-0191(01)00125-3
C, I. J., N, O. D., & A, A. A. (2005). Competitive adsorption of Zn (II), Cd (II) AND Pb (II) ions from aqueous and non-aqueous solution by maize cob and husk. African Journal of Biotechnology, 4(10), 1113–1116. http://www.academicjournals.org/AJB
Cay, S., Uyanık, A., & Özaşık, A. (2004). Single and Binary Component Adsorption on Copper(II) and Cadmium(II) from Aqueous Solution Using Tea Industry Waste. Separation and Purification Technology, 38, 273–280. https://doi.org/10.1016/j.seppur.2003.12.003
Chen, Q., Luo, Z., Hills, C., Xue, G., & Tyrer, M. (2009). Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Research, 43(10), 2605–2614. https://doi.org/10.1016/j.watres.2009.03.007
Chi, H., Wang, S., Li, T., & Li, Z. (2021). Recent progress in using hybrid silicon polymer composites for wastewater treatment. Chemosphere, 263, 128380. https://doi.org/10.1016/j.chemosphere.2020.128380
Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science (Oxford), 30(1), 38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002
Da’na, E. (2017). Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous and Mesoporous Materials, 247(1), 145–157. https://doi.org/10.1016/j.micromeso.2017.03.050
Delaroza, R. (2018). Adsorpsi logam berat menggunakan adsorben alami pada air limbah industri. 5.
El-Gaayda, J., Titchou, F. E., Oukhrib, R., Yap, P. S., Liu, T., Hamdani, M., & Ait Akbour, R. (2021). Natural flocculants for the treatment of wastewaters containing dyes or heavy metals: A state-of-the-art review. Journal of Environmental Chemical Engineering, 9(5), 106060. https://doi.org/10.1016/j.jece.2021.106060
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011
Gottipati, R., Susmita, M., & Ramakrishna, G. (2012). Application of response surface methodology for optimization of Cr(III) and Cr(VI) adsorption on commercial activated carbons. Research Journal of Chemical Sciences, 2(2), 40–48. https://www.researchgate.net/publication/225076280
Gunatilake, S. K. (2015). Methods of Removing Heavy Metals from. Journal of Multidisciplinary Engineering Science Studies Industrial Wastewater, 1(1), 13–18. https://www.researchgate.net/profile/Maurice-Ekpenyong/post/removal_of_copper_metal_from_liquids/attachment/5c4891f83843b0544e61f4d3/AS%3A718267689758722%401548259770428/download/Metal+biosorption.pdf%0Awww.jmess.org
Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe 2O 3 nanoparticles. Chemical Engineering Journal, 180, 81–90. https://doi.org/10.1016/j.cej.2011.11.006
Kimia, J., Chemistry, J. O. F., Amina, D., Demand, B. O., Demand, C. O., Cu, K., Bod, L., Bod, L., & Mapping, S.-E. D. X. (2023). MODIFIKASI pH SILIKA MESOPORI DARI PASIR PANTAI SEBAGAI ADSORBEN TIMBAL ( Pb ) DAN TEMBAGA ( Cu ) DALAM LIMBAH PERCETAKAN S . Salamah * dan A . Rahayu Chemical Engineering , Universitas Ahmad Dahlan , Yogyakarta 55191 , Indonesia PENDAHULUAN Semakin menin. 17(1), 49–56.
Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O., & Jo, H. Y. (2010). Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. Journal of Hazardous Materials, 174(1–3), 307–313. https://doi.org/10.1016/j.jhazmat.2009.09.052
L. O. Ekebafe. (2012). Removal of heavy metals from aqueous media using native cassava starch hydrogel. African Journal of Environmental Science and Technology, 6(7), 275–282. https://doi.org/10.5897/ajest12.011
López-Maldonado, E. A., Oropeza-Guzman, M. T., Jurado-Baizaval, J. L., & Ochoa-Terán, A. (2014). Coagulation-flocculation mechanisms in wastewater treatment plants through zeta potential measurements. Journal of Hazardous Materials, 279, 1–10. https://doi.org/10.1016/j.jhazmat.2014.06.025
M., D., & O., M. (2013). Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment. Hydrocarbon. https://doi.org/10.5772/48176
Maleki, F., Gholami, M., Torkaman, R., Torab-Mostaedi, M., & Asadollahzadeh, M. (2021). Cobalt(II) removal from aqueous solution by modified polymeric adsorbents prepared with induced-graft polymerization: Batch and continuous column study with analysis of breakthrough behaviors. Environmental Technology and Innovation, 24, 102054. https://doi.org/10.1016/j.eti.2021.102054
Maryudi, M., Rahayu, A., Syauqi, R., & Islami, M. K. (2021). Teknologi Pengolahan Kandungan Kromium dalam Limbah Penyamakan Kulit Menggunakan Proses Adsorpsi: Review. Jurnal Teknik Kimia Dan Lingkungan, 5(1), 90. https://doi.org/10.33795/jtkl.v5i1.207
Mollah, M. Y., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC)--science and applications. Journal of Hazardous Materials, 84(1), 29–41. https://doi.org/10.1016/s0304-3894(01)00176-5
Özer, A., Özer, D., & Özer, A. (2004). The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): Determination of the equilibrium and thermodynamic parameters. Process Biochemistry, 39(12), 2183–2191. https://doi.org/10.1016/j.procbio.2003.11.008
Rahayu, A., Fadhillah Hanum, F., Aldilla Fajri, J., Dwi Anggraini, W., & Khasanah, U. (2021). Review: Pengolahan Limbah cair Industri dengan Menggunakan Silika A Review: Industrial Liquid Waste Treatment Using Silica. Open Science and Technology, 02(01), 2776–169. https://opscitech.com/journal
Raouf MS, A., & Raheim ARM, A. (2016). Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review. Journal of Pollution Effects & Control, 05(01), 1–13. https://doi.org/10.4172/2375-4397.1000180
Sabir, S. (2015). Approach of cost-effective adsorbents for oil removal from oily water. Critical Reviews in Environmental Science and Technology, 45(17), 1916–1945. https://doi.org/10.1080/10643389.2014.1001143
Samaha, S. H., Essa, D. M., Osman, E. M., & Ibrahim, S. F. (2015). Synthesis and characterization of hydroxyethyl cellulose grafted copolymers and its application for removal of nickel ions from aqueous solutions. International Journal of Engineering Innovation & Research, 4(4), 645–653.
Sheth, K. N., & Soni, V. M. (2005). Comparative study of removal of Cr(VI) with PAC, GAC and adsorbent prepared from tobacco roots. Journal of Environmental Science & Engineering, 47(3), 218–221.
Sokker, H. H., El-Sawy, N. M., Hassan, M. A., & El-Anadouli, B. E. (2011). Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. Journal of Hazardous Materials, 190(1–3), 359–365. https://doi.org/10.1016/j.jhazmat.2011.03.055
Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Bioresource Technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064
Tofan, L. (2022). Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis. Polymers, 14(9). https://doi.org/10.3390/polym14091647
Trüby, P. (2003). Impact of Heavy Metals on Forest Trees from Mining Areas.
Villaescusa, I., Fiol, N., Martínez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38(4), 992–1002. https://doi.org/10.1016/j.watres.2003.10.040
Wang, Q., Sen, B., Liu, X., He, Y., Xie, Y., & Wang, G. (2018). Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production. Science of the Total Environment, 631–632, 994–1004. https://doi.org/10.1016/j.scitotenv.2018.03.078
Xavier, A. L. P., Adarme, O. F. H., Furtado, L. M., Ferreira, G. M. D., da Silva, L. H. M., Gil, L. F., & Gurgel, L. V. A. (2018). Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. Journal of Colloid and Interface Science, 516, 431–445. https://doi.org/10.1016/j.jcis.2018.01.068
Zamparas, M., Tzivras, D., Dracopoulos, V., & Ioannides, T. (2020). Application of sorbents for oil spill cleanup focusing on natural-based modified materials: A review. Molecules, 25(19), 1–22. https://doi.org/10.3390/molecules25194522
Refbacks
- There are currently no refbacks.