Review: Biomassa Sebagai Adsorbent untuk Pengolahan Logam Berat Pada Air Limbah Industri

Veranica Veranica, Aster Rahayu, Maryudi Maryudi

Abstract


Industrial wastewater generally contains heavy metalssuch as lead, cadmium, arsenic, nickel, chromium and mercury. Contamination of water with these elements is very dangerous and will pollute the environment, so a suitable waste water treatment is required. This review aims to find out the efficient methods of handling industrial wastewater and the benefits of biomass. Many scientific methods are used in this regard, including adsorption, chemical precipitation, ion exchange, electrochemical treatment, membrane filtration, coagulation and flocculation. However, some of these techniques have drawbacks such aswill produce a large amount of metal sludge, making it difficult to recycle metal, and the formation of toxic sludge or other wastes. Of all these techniques, adsorption with adsorbent biomasshas been widely known because it is an economical, effective and environmentally friendly processing technique, so this method is suitable for treating industrial wastewater. The use of biomass as an adsorbent is intendedto help reduce dependence on fossil raw materials and greenhouse gas emissions that contribute to climate change.

Keywords


heavy metal; adsorption; adsorbent; biomass

Full Text:

PDF

References


Abas, S. N. A., Ismail, M. H. S., Kamal, M. L., & Izhar, S. (2013). Adsorption process of heavy metals by low-cost adsorbent: A review. World Applied Sciences Journal, 28(11), 1518–1530. https://doi.org/10.5829/idosi.wasj.2013.28.11.1874

Al-Majed, A. A., Adebayo, A. R., & Hossain, M. E. (2012). A sustainable approach to controlling oil spills. Journal of Environmental Management, 113(November 2020), 213–227. https://doi.org/10.1016/j.jenvman.2012.07.034

Aman, T., Kazi, A. A., Sabri, M. U., & Bano, Q. (2008). Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent. Colloids and Surfaces B: Biointerfaces, 63(1), 116–121. https://doi.org/10.1016/j.colsurfb.2007.11.013

Babel, S., & Omega, A. (2003). Various treatment technologies to remove arsenic and mercury from contaminated groundwater: An overview. Proceedings of the First International Symposium on Southeast Asian Water Environment, 433–440.

Bose, P., Aparna Bose, M., & Kumar, S. (2002). Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc and cyanide. Advances in Environmental Research, 7(1), 179–195. https://doi.org/10.1016/S1093-0191(01)00125-3

C, I. J., N, O. D., & A, A. A. (2005). Competitive adsorption of Zn (II), Cd (II) AND Pb (II) ions from aqueous and non-aqueous solution by maize cob and husk. African Journal of Biotechnology, 4(10), 1113–1116. http://www.academicjournals.org/AJB

Cay, S., Uyanık, A., & Özaşık, A. (2004). Single and Binary Component Adsorption on Copper(II) and Cadmium(II) from Aqueous Solution Using Tea Industry Waste. Separation and Purification Technology, 38, 273–280. https://doi.org/10.1016/j.seppur.2003.12.003

Chen, Q., Luo, Z., Hills, C., Xue, G., & Tyrer, M. (2009). Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Research, 43(10), 2605–2614. https://doi.org/10.1016/j.watres.2009.03.007

Chi, H., Wang, S., Li, T., & Li, Z. (2021). Recent progress in using hybrid silicon polymer composites for wastewater treatment. Chemosphere, 263, 128380. https://doi.org/10.1016/j.chemosphere.2020.128380

Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science (Oxford), 30(1), 38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

Da’na, E. (2017). Adsorption of heavy metals on functionalized-mesoporous silica: A review. Microporous and Mesoporous Materials, 247(1), 145–157. https://doi.org/10.1016/j.micromeso.2017.03.050

Delaroza, R. (2018). Adsorpsi logam berat menggunakan adsorben alami pada air limbah industri. 5.

El-Gaayda, J., Titchou, F. E., Oukhrib, R., Yap, P. S., Liu, T., Hamdani, M., & Ait Akbour, R. (2021). Natural flocculants for the treatment of wastewaters containing dyes or heavy metals: A state-of-the-art review. Journal of Environmental Chemical Engineering, 9(5), 106060. https://doi.org/10.1016/j.jece.2021.106060

Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407–418. https://doi.org/10.1016/j.jenvman.2010.11.011

Gottipati, R., Susmita, M., & Ramakrishna, G. (2012). Application of response surface methodology for optimization of Cr(III) and Cr(VI) adsorption on commercial activated carbons. Research Journal of Chemical Sciences, 2(2), 40–48. https://www.researchgate.net/publication/225076280

Gunatilake, S. K. (2015). Methods of Removing Heavy Metals from. Journal of Multidisciplinary Engineering Science Studies Industrial Wastewater, 1(1), 13–18. https://www.researchgate.net/profile/Maurice-Ekpenyong/post/removal_of_copper_metal_from_liquids/attachment/5c4891f83843b0544e61f4d3/AS%3A718267689758722%401548259770428/download/Metal+biosorption.pdf%0Awww.jmess.org

Gupta, V. K., & Nayak, A. (2012). Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe 2O 3 nanoparticles. Chemical Engineering Journal, 180, 81–90. https://doi.org/10.1016/j.cej.2011.11.006

Kimia, J., Chemistry, J. O. F., Amina, D., Demand, B. O., Demand, C. O., Cu, K., Bod, L., Bod, L., & Mapping, S.-E. D. X. (2023). MODIFIKASI pH SILIKA MESOPORI DARI PASIR PANTAI SEBAGAI ADSORBEN TIMBAL ( Pb ) DAN TEMBAGA ( Cu ) DALAM LIMBAH PERCETAKAN S . Salamah * dan A . Rahayu Chemical Engineering , Universitas Ahmad Dahlan , Yogyakarta 55191 , Indonesia PENDAHULUAN Semakin menin. 17(1), 49–56.

Kwon, J. S., Yun, S. T., Lee, J. H., Kim, S. O., & Jo, H. Y. (2010). Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: Kinetics and equilibria of sorption. Journal of Hazardous Materials, 174(1–3), 307–313. https://doi.org/10.1016/j.jhazmat.2009.09.052

L. O. Ekebafe. (2012). Removal of heavy metals from aqueous media using native cassava starch hydrogel. African Journal of Environmental Science and Technology, 6(7), 275–282. https://doi.org/10.5897/ajest12.011

López-Maldonado, E. A., Oropeza-Guzman, M. T., Jurado-Baizaval, J. L., & Ochoa-Terán, A. (2014). Coagulation-flocculation mechanisms in wastewater treatment plants through zeta potential measurements. Journal of Hazardous Materials, 279, 1–10. https://doi.org/10.1016/j.jhazmat.2014.06.025

M., D., & O., M. (2013). Polycyclic Aromatic Hydrocarbons a Constituent of Petroleum: Presence and Influence in the Aquatic Environment. Hydrocarbon. https://doi.org/10.5772/48176

Maleki, F., Gholami, M., Torkaman, R., Torab-Mostaedi, M., & Asadollahzadeh, M. (2021). Cobalt(II) removal from aqueous solution by modified polymeric adsorbents prepared with induced-graft polymerization: Batch and continuous column study with analysis of breakthrough behaviors. Environmental Technology and Innovation, 24, 102054. https://doi.org/10.1016/j.eti.2021.102054

Maryudi, M., Rahayu, A., Syauqi, R., & Islami, M. K. (2021). Teknologi Pengolahan Kandungan Kromium dalam Limbah Penyamakan Kulit Menggunakan Proses Adsorpsi: Review. Jurnal Teknik Kimia Dan Lingkungan, 5(1), 90. https://doi.org/10.33795/jtkl.v5i1.207

Mollah, M. Y., Schennach, R., Parga, J. R., & Cocke, D. L. (2001). Electrocoagulation (EC)--science and applications. Journal of Hazardous Materials, 84(1), 29–41. https://doi.org/10.1016/s0304-3894(01)00176-5

Özer, A., Özer, D., & Özer, A. (2004). The adsorption of copper(II) ions on to dehydrated wheat bran (DWB): Determination of the equilibrium and thermodynamic parameters. Process Biochemistry, 39(12), 2183–2191. https://doi.org/10.1016/j.procbio.2003.11.008

Rahayu, A., Fadhillah Hanum, F., Aldilla Fajri, J., Dwi Anggraini, W., & Khasanah, U. (2021). Review: Pengolahan Limbah cair Industri dengan Menggunakan Silika A Review: Industrial Liquid Waste Treatment Using Silica. Open Science and Technology, 02(01), 2776–169. https://opscitech.com/journal

Raouf MS, A., & Raheim ARM, A. (2016). Removal of Heavy Metals from Industrial Waste Water by Biomass-Based Materials: A Review. Journal of Pollution Effects & Control, 05(01), 1–13. https://doi.org/10.4172/2375-4397.1000180

Sabir, S. (2015). Approach of cost-effective adsorbents for oil removal from oily water. Critical Reviews in Environmental Science and Technology, 45(17), 1916–1945. https://doi.org/10.1080/10643389.2014.1001143

Samaha, S. H., Essa, D. M., Osman, E. M., & Ibrahim, S. F. (2015). Synthesis and characterization of hydroxyethyl cellulose grafted copolymers and its application for removal of nickel ions from aqueous solutions. International Journal of Engineering Innovation & Research, 4(4), 645–653.

Sheth, K. N., & Soni, V. M. (2005). Comparative study of removal of Cr(VI) with PAC, GAC and adsorbent prepared from tobacco roots. Journal of Environmental Science & Engineering, 47(3), 218–221.

Sokker, H. H., El-Sawy, N. M., Hassan, M. A., & El-Anadouli, B. E. (2011). Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. Journal of Hazardous Materials, 190(1–3), 359–365. https://doi.org/10.1016/j.jhazmat.2011.03.055

Sud, D., Mahajan, G., & Kaur, M. P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Bioresource Technology, 99(14), 6017–6027. https://doi.org/10.1016/j.biortech.2007.11.064

Tofan, L. (2022). Polymeric Biomass Derived Adsorbents for Co(II) Remediation, Recycling and Analysis. Polymers, 14(9). https://doi.org/10.3390/polym14091647

Trüby, P. (2003). Impact of Heavy Metals on Forest Trees from Mining Areas.

Villaescusa, I., Fiol, N., Martínez, M., Miralles, N., Poch, J., & Serarols, J. (2004). Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Research, 38(4), 992–1002. https://doi.org/10.1016/j.watres.2003.10.040

Wang, Q., Sen, B., Liu, X., He, Y., Xie, Y., & Wang, G. (2018). Enhanced saturated fatty acids accumulation in cultures of newly-isolated strains of Schizochytrium sp. and Thraustochytriidae sp. for large-scale biodiesel production. Science of the Total Environment, 631–632, 994–1004. https://doi.org/10.1016/j.scitotenv.2018.03.078

Xavier, A. L. P., Adarme, O. F. H., Furtado, L. M., Ferreira, G. M. D., da Silva, L. H. M., Gil, L. F., & Gurgel, L. V. A. (2018). Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. Journal of Colloid and Interface Science, 516, 431–445. https://doi.org/10.1016/j.jcis.2018.01.068

Zamparas, M., Tzivras, D., Dracopoulos, V., & Ioannides, T. (2020). Application of sorbents for oil spill cleanup focusing on natural-based modified materials: A review. Molecules, 25(19), 1–22. https://doi.org/10.3390/molecules25194522


Refbacks

  • There are currently no refbacks.