Bioconversion of Fruit Wastes into High Economic Value of Lipids using Heterotrophic Microalgae Aurantiochytrium from Mangrove Forests of Bunyu Island, North Kalimantan

Suhendra Suhendra, Andri Hutari, Sekar Pratiwi, Hutri Puspita Sari

Abstract


Aurantiochytrium microalgae is recognized as heterotrophic microalgae enables to produce high economic value of lipids for the use in health care industries. This research presents the production of biomass containing lipids through the bioconversion of fruit waste using Aurantiochytrium microalgae. Aurantiochytrium microalgae isolate was obtained from isolated mangrove leaves in the mangrove forest of Bunyu Island, North Kalimantan. The production process takes place in three stages, namely standing culture (SC), pre-culture (PC), and main culture. The SC and PC stages took place 48 hours respectively, while the MC took place 120 hours. The source of nutrition at the main cultivation stage (MC) used monosodium glutamate (MSG) as a nitrogen source, while the carbon source was from fruit waste. Amount of 250 grams of fruit waste was mixed and blended, added with 250 ml of water and then sonicated. The mass ratio of nitrogen source and carbon source was 1:3. The maximum of observed microalgal cell diameters for each stage were 14.5 μm (SC), 19.2 μm (PC) and 25.5 μm (MC). Produced biomass in this experiment has the characteristics of a yellow emulsion liquid, pH 6.2, fishy smell and total dissolved solids (TDS) of 4,820 ppm and a wet biomass of 68 g/l

Keywords


Aurantiochytrium; lipids; microalgae; omega-3; bioprocess

Full Text:

PDF

References


Aasen, I. M., Ertesvåg, H., Heggeset, T. M. B., Liu, B., Brautaset, T., Vadstein, O., & Ellingsen, T. E. (2016). Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Applied Microbiology and Biotechnology, 100(10), 4309–4321. https://doi.org/10.1007/s00253-016-7498-4

Abdel-wahab, M. A., El-samawaty, A. E. M. A., Elgorban, A. M., & Bahkali, A. H. (2021). Biological Sciences Fatty acid production of thraustochytrids from Saudi Arabian mangroves. Saudi Journal of Biological Sciences, 28(1), 855–864. https://doi.org/10.1016/j.sjbs.2020.11.024

Dillon, G. P., Keegan, J. D., & Moran, C. A. (2020). Toxicological evaluation of an unextracted Aurantiochytrium limacinum biomass, a novel docosahexaenoic acid rich feed ingredient. Food and Chemical Toxicology, 141(July), 1–40. https://doi.org/10.1016/j.fct.2020.111397

Evonik. (2021). Evonik stärkt strategische Partnerschaft mit BioNTech bei Covid-19 Impfstoff. https://corporate.evonik.de/de/presse/pressemitteilungen/corporate/evonik-starkt-strategische-partnerschaft-mit-biontech-bei-covid-19-impfstoff-152725.html

Furlan, V. J. M., Maus, V., Batista, I., & Bandarra, N. M. (2017). Production of docosahexaenoic acid by Aurantiochytrium sp. ATCC PRA-276. Brazilian Journal of Microbiology, 48(2), 359–365. https://doi.org/10.1016/j.bjm.2017.01.001

Honda, D.; Yokochi, T.; Nakahara, T.; Erata, M.; Higashihara, T. (1998). Schizochytrium limacinum sp. nov., a new thraustochytrid from a mangrove area in the west Pacific Ocean. Mycol. Res. 1998, 102, 439–448., 102, 439–448.

Humaidah, N., Nakai, S., Nishijima, W., Gotoh, T., & Furuta, M. (2020). Application of Aurantiochytrium sp. L3W for food-processing wastewater treatment in combination with polyunsaturated fatty acids production for fish aquaculture. Science of the Total Environment, 743(November), 1–5. https://doi.org/10.1016/j.scitotenv.2020.140735

Hutari, A., An Nisaa, R., Suhendra, S., Agustin, Y., & Ayunda, K. A. (2022). Exploration Of High Economic Value Microalgaes In The Mangrove Area Of Pari Island, Seribu Islands, Jakarta. JURNAL PEMBELAJARAN DAN BIOLOGI NUKLEUS, 8(3), 662–672. https://doi.org/10.36987/jpbn.v8i3.3096

Hutari, A., Hidayati, W., Mustopa, A.Z. and Neubauer, P. (2017). Aurantiochytrium sp. isolate LA22 small subunit ribosomal RNA gene, partial sequence (Vol. 390, Issue 10111). https://www.ncbi.nlm.nih.gov/nuccore/KY970084

Hutari, A., Hidayati, W., Mustopa, A.Z. and Neubauer, P. (2018). Aurantiochytrium sp. isolate LR52 small subunit ribosomal RNA gene, partial sequence. In National Center for Biological Information. https://doi.org/10.5749/j.ctv65sz27.3

Hutari, A., Hidayati, W., Mustopa, A.Z. and Neubauer, P. (2020). Aurantiochytrium sp. isolate LA21 small subunit ribosomal RNA gene, partial sequence (Vol. 390, Issue 10111).

Júnior, V., Furlan, M., Maus, V., Batista, I., & Maria, N. (2017). Production of docosahexaenoic acid by Aurantiochytrium sp . ATCC PRA-276. Brazilian Journal of Microbiology, 48(2), 359–365. https://doi.org/10.1016/j.bjm.2017.01.001

Khajuria, A., Atienza, V. A., Chavanich, S., Henning, W., Islam, I., Kral, U., Liu, M., Liu, X., Murthy, I. K., Oyedotun, T. D. T., Verma, P., Xu, G., Zeng, X., & Li, J. (2022). Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals. Circular Economy, 1(1), 100001. https://doi.org/10.1016/j.cec.2022.100001

Kumar, Y., Kaur, S., Kheto, A., Munshi, M., Sarkar, A., Pandey, H. O., Tarafdar, A., & Sirohi, R. (2022). Cultivation of microalgae on food waste : Recent advances and way forward. Bioresource Technology, August, 8–10.

Laddha, H., Pawar, P. R., & Prakash, G. (2021). Bioconversion of waste acid oil to docosahexaenoic acid by integration of “ex novo’’ and “de novo’’ fermentation in Aurantiochytrium limacinum. Bioresource Technology, 332(July), 9–12. https://doi.org/10.1016/j.biortech.2021.125062

Lee, G. I., Shin, W. S., MoonGeun Jung, S., Kim, W., Lee, C., & Kwon, J. H. (2020). Effects of soybean curd wastewater on growth and DHA production in Aurantiochytrium sp. Lwt, 134(December), 2020–2022. https://doi.org/10.1016/j.lwt.2020.110245

Lehmann, C., Cruz-Jesus, F., Oliveira, T., & Damásio, B. (2022). Leveraging the circular economy: Investment and innovation as drivers. Journal of Cleaner Production, 360(August), 1–9. https://doi.org/10.1016/j.jclepro.2022.132146

Li, S., Zhao, S., Yan, S., Qiu, Y., Song, C., Li, Y., & Kitamura, Y. (2019). Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production — A review. Chinese Journal of Chemical Engineering, 27(12), 2845–2856. https://doi.org/10.1016/j.cjche.2019.03.028

Lowrey, J., Brooks, M. S., & Armenta, R. E. (2016). Nutrient recycling of lipid-extracted waste in the production of an oleaginous thraustochytrid. Applied Microbiology and Biotechnology, 4711–4721. https://doi.org/10.1007/s00253-016-7463-2

Maria, A., Finco, D. O., Maria, A., Finco, D. O., Daniel, L., Mamani, G., De, J. C., Vinícius, G., Pereira, D. M., Thomaz-soccol, V., Soccol, R., Maria, A., Finco, D. O., Daniel, L., Mamani, G., & De, J. C. (2016). Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology, 0(0), 000. https://doi.org/10.1080/07388551.2016.1213221

Nazir, Y., Halim, H., Al-Shorgani, N. K. N., Manikan, V., Hamid, A. A., & Song, Y. (2020). Efficient conversion of extracts from low-cost, rejected fruits for high-valued Docosahexaenoic acid production by Aurantiochytrium sp. SW1. Algal Research, 50(September), 1–11. https://doi.org/10.1016/j.algal.2020.101977

Nazir, Y., Kaid, N., Al-shorgani, N., Manikan, V., Abdul, A., & Song, Y. (2020). Efficient conversion of extracts from low-cost , rejected fruits for high-valued Docosahexaenoic acid production by Aurantiochytrium sp . SW1. Algal Research, 50(February). https://doi.org/10.1016/j.algal.2020.101977

Optimisation of Media Composition for the Fermentation of Lipids by Aurantiochytrium limacinum SR21 (Issue October). (2014).

Patel, A., Rova, U., Christakopoulos, P., & Matsakas, L. (2020). Mining of squalene as a value-added byproduct from DHA producing marine thraustochytrid cultivated on food waste hydrolysate. Science of the Total Environment, 736, 139691. https://doi.org/10.1016/j.scitotenv.2020.139691

Russo, G. L., Langellotti, A. L., Sacchi, R., & Masi, P. (2022). Techno-economic assessment of DHA-rich Aurantiochytrium sp. production using food industry by-products and waste streams as alternative growth media. Bioresource Technology Reports, 18. https://doi.org/10.1016/j.biteb.2022.100997

Saengwong, A., Yongmanitchai, W., & Chonudomkul, D. (2018). Screening and Optimization of Squalene Production from Microalgae Aurantiochytrium sp . 45(2), 680–691.

Spalvins, K., Zihare, L., & Blumberga, D. (2018). Single cell protein production from waste biomass: Comparison of various industrial by-products. Energy Procedia, 147, 409–418. https://doi.org/10.1016/j.egypro.2018.07.111

Suen, Y. L., Tang, H., Huang, J., & Chen, F. (2014). Enhanced Production of Fatty Acids and Astaxanthin in Aurantiochytrium sp. by the Expression of Vitreoscilla Hemoglobin.

Suhendra. (2020). Isolation of Marine Microalgae. https://www.youtube.com/watch?v=91cvOZ1A4I8

Suhendra, & Andri Hutari. (2023, April 21). Biodiscovery Mikroalga Bunaken. Https://Www.Youtube.Com/Watch?V=TKJsvTtWneA.

Suhendra, Chuzaimah, Hutari, A., & Saputro, A. G. E. (2022). Isolasi Mikroalga Aurantiochytrium dari Hutan Bakau. https://www.youtube.com/watch?v=0PRdXOxHNI8

Suhendra, E., S., H., Z., & A, H. (2019). Kajian Singkat Rancang Bangun Pabrik Docohexanoic Acid dari Mikroalga Species Aurantiochytrium dari Hutan Bakau Indonesia. Konversi, 8(1), 33–44.

Suhendra, S. (2022). Bioprocess of of Astaxanthin Production as Functional Food from Aurantiochytrium Microalgae: A Review. CHEMICA: Jurnal Teknik Kimia, 8(2), 123. https://doi.org/10.26555/chemica.v8i2.21954

Suhendra, S., Pantoiyo, T., Fazlia, S., Sulistiawati, E., & Evitasari, R. T. (2021). Bioprocess Potentials of Squalene from Thraustochytrids Microalgae for Nutraceuticals in New Normal Era Isolated from Indonesian Mangroves: A Review. CHEMICA: Jurnal Teknik Kimia, 8(1), 18. https://doi.org/10.26555/chemica.v8i1.19121

Suhendra, S., Septianingsih, L., Rizka Ariandi, T., Husna, M., Adi Laksana, Z., Yuniasih, D., & Hutari, A. (2022). Isolasi mikroalga Aurantiochytrium dari Raja Ampat dan potensinya pada industri bahan baku adjuvant vaksin. Jurnal Rekayasa Proses, 16(2), 34. https://doi.org/10.22146/jrekpros.72045

Suhendra, S., Sulistiawati, E., Evitasari, R. T., Ariandi, T. R., Septianingsih, L., & Hutari, A. (2023). Bioprocess potentials of Aurantiochytrium microalgae from Kulonprogo mangrove forest Yogyakarta, Indonesia. AIP Conference Proceedings, 2667. https://doi.org/10.1063/5.0112298

Suhendra, Septianingsih, L., Ariandi, T. R., Husna, M., Laksana, Z. A., Yuniasih, D., & Hutari, A. (2022). Isolasi mikroalga Aurantiochytrium dari Raja Ampat dan potensinya pada industri bahan baku adjuvant vaksin. Jurnal Rekayasa Proses, 16. https://doi.org/10.22146/jrekpros.72045

Wai, K., Tsunehiro, F., & Feng, A. (2010). Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. 1303–1309. https://doi.org/10.1007/s11274-009-0301-2

Yafetto, L. (2022). Application of solid-state fermentation by microbial biotechnology for bioprocessing of agro-industrial wastes from 1970 to 2020: A review and bibliometric analysis. Heliyon, 8(3), e09173. https://doi.org/10.1016/j.heliyon.2022.e09173

Yen, S. W., Nagarajan, D., Chen, W. H., Lee, D. J., & Chang, J. S. (2023). Fermentative production of astaxanthin from sorghum distillery residue by an indigenous Aurantiochytrium sp. CJ6 strain using a continuous-feeding fed-batch process. Bioresource Technology, 376. https://doi.org/10.1016/j.biortech.2023.128817

Zeng, X., Guo, X., Su, G., Danquah, M. K., Zhang, S., Lu, Y., Sun, Y., & Lin, L. (2015). Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renewable and Sustainable Energy Reviews, 42, 1385–1392. https://doi.org/10.1016/j.rser.2014.11.033


Refbacks

  • There are currently no refbacks.