Tweets Classification of Mental Health Disorder in Indonesia Using LDA and Cosine Similarity
Abstract
Purpose: Twitter related to mental health has great potential as a medium to provide important information to the public and health organizations on a large scale, but an evaluation of tweet data related to mental health disorders has not been carried out. This study aims to classify tweet data to determine the most common mental health disorders in Indonesia based on the symptoms experienced.
Methodology: The classification process is carried out using cosine similarity calculations between tweets data and keywords which are compiled based on theoretical studies and optimization of the LDA topic modeling results.
Findings/result:The classification results show that the most discussed issues on Twitter are depression, bipolar, schizophrenia, dementia, and PTSD. Based on these results it can be interpreted that the level of prevalence and public attention to depressive diorders is quite high compared to other disorders. From the results of the classification, it is also possible to identify the most discussed symptoms throughthe emergence of keywords from each category.
Originality: Classification is calculated based on the cosine similarity between tweets and keywords compiled from human judgement and enriched using the results of LDA topic modeling to improve classification performanceKeywords
Full Text:
PDFReferences
World Health Organization, “Mental Health,” www.who.int, 2022. https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response (accessed Mar. 02, 2023).
Kementerian Kesehatan Republik Indonesia Badan Penelitian dan Pengembangan Kesehatan, “Laporan Nasional Riskesdas 2018,” Kementerian Kesehatan RI, 2019. https://www.kemkes.go.id/article/view/19093000001/penyakit-jantung-penyebab-kematian-terbanyak-ke-2-di-indonesia.html (accessed Jun. 12, 2023).
C. M. Annur, “Survei Populix: 1 dari 2 Penduduk Indonesia Punya Masalah Kesehatan Mental,” databoks.katadata.co.id, 2022. https://databoks.katadata.co.id/datapublish/2022/10/27/survei-populix-1-dari-2-penduduk-indonesia-punya-masalah-kesehatan-mental (accessed Mar. 02, 2023).
K. Saha, J. Torous, S. K. Ernala, C. Rizuto, A. Stafford, and M. De Choudhury, “A computational study of mental health awareness campaigns on social media,” Transl. Behav. Med., vol. 9, no. 6, pp. 1197–1207, 2019, doi: 10.1093/tbm/ibz028.
N. Al Asad, M. A. Mahmud Pranto, S. Afreen, and M. M. Islam, “Depression Detection by Analyzing Social Media Posts of User,” 2019 IEEE Int. Conf. Signal Process. Information, Commun. Syst. SPICSCON 2019, pp. 13–17, 2019, doi: 10.1109/SPICSCON48833.2019.9065101.
S. R. Kamite and V. B. Kamble, “Detection of Depression in Social Media via Twitter Using Machine learning Approach,” Proc. 2020 Int. Conf. Smart Innov. Des. Environ. Manag. Plan. Comput. ICSIDEMPC 2020, pp. 122–125, 2020, doi: 10.1109/ICSIDEMPC49020.2020.9299641.
N. S. Fal Dessai and J. A. Laxminarayanan, “A Topic Modeling based Approach for Mining Online Social Media Data,” 2019 2nd Int. Conf. Intell. Comput. Instrum. Control Technol. ICICICT 2019, pp. 704–709, 2019, doi: 10.1109/ICICICT46008.2019.8993231.
M. Habibi, A. Priadana, A. B. Saputra, and P. W. Cahyo, “Topic Modelling of Germas Related Content on Instagram Using Latent Dirichlet Allocation (LDA),” vol. 34, no. Ahms 2020, pp. 260–264, 2021, doi: 10.2991/ahsr.k.210127.060.
P. I. Nainggolan, D. S. Prasvita, and D. S. Bukit, “Klasifikasi Informasi Kesehatan Pada Data Media Sosial Menggunakan Support Vector Machine dan K-Fold Cross Validation,” Malikussaleh J. Mech. Sci. Technol., vol. 5, no. 2, pp. 34–38, 2021, [Online]. Available: https://ojs.unimal.ac.id/mjmst/article/view/6317%0Ahttps://ojs.unimal.ac.id/mjmst/article/download/6317/3169.
S. Gangbo and G. Shidaganti, “Classification of Student Mental Health Prediction Using LSTM,” 2022 IEEE 3rd Glob. Conf. Adv. Technol. GCAT 2022, pp. 1–6, 2022, doi: 10.1109/GCAT55367.2022.9972061.
K. Reagan, A. S. Varde, and L. Xie, “Evolving Perceptions of Mental Health on Social Media and their Medical Impacts,” pp. 5328–5337, 2023, doi: 10.1109/bigdata55660.2022.10021013.
R. Diouf, E. N. Sarr, O. Sall, B. Birregah, M. Bousso, and S. N. Mbaye, “Web Scraping: State-of-the-Art and Areas of Application,” in Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, 2019, pp. 6040–6042, doi: 10.1109/BIGDATA47090.2019.9005594.
World Health Organization, “Mental disorders,” www.who.int, Jun. 08, 2022. https://www.who.int/en/news-room/fact-sheets/detail/mental-disorders (accessed Jun. 14, 2023).
C. Sobin and H. A. Sackeim, “Psychomotor Symptoms of Depression,” A m J Psychiatry, vol. 154, no. January, pp. 4–17, 1997.
A. P. Association, “What are Bipolar Disorders?,” https://www.psychiatry.org/, 2023. https://www.psychiatry.org/patients-families/bipolar-disorders/what-are-bipolar-disorders (accessed Jul. 31, 2023).
N. C. Andreasen and M. Flaum, “Schizophrenia: The Characteristic Symptoms,” Schizophr. Bull., vol. 17, no. 1, pp. 27–49, Jan. 1991, doi: 10.1093/SCHBUL/17.1.27.
World Health Organization, “Dementia,” https://www.who.int/, 2022. https://www.who.int/news-room/fact-sheets/detail/dementia (accessed Jul. 31, 2023).
M. L. Pacella, B. Hruska, and D. L. Delahanty, “The physical health consequences of PTSD and PTSD symptoms: A meta-analytic review,” J. Anxiety Disord., vol. 27, no. 1, pp. 33–46, Jan. 2013, doi: 10.1016/j.janxdis.2012.08.004.
I. Hemalatha, D. G. P. S. Varma, and D. A.Govardhan, “Preprocessing The Informal Data for Efficient Sentiment Analysis,” Int. J. Emerg. Trends Technol. Comput. Sci., vol. 1, no. 2, p. 58, 2012, [Online]. Available: http://ijettcs.org/Volume1Issue2/IJETTCS-2012-08-14-047.pdf.
X. Sun, X. Liu, B. Li, Y. Duan, H. Yang, and J. Hu, “Exploring topic models in software engineering data analysis: A survey,” 2016 IEEE/ACIS 17th Int. Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput. SNPD 2016, pp. 357–362, 2016, doi: 10.1109/SNPD.2016.7515925.
D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” Art Sci. Anal. Softw. Data, vol. 3, pp. 993–1022, 2015, doi: 10.1016/B978-0-12-411519-4.00006-9.
M. Benard Magara, S. O. Ojo, and T. Zuva, “A comparative analysis of text similarity measures and algorithms in research paper recommender systems,” 2018 Conf. Inf. Commun. Technol. Soc. ICTAS 2018 - Proc., no. November 2019, pp. 1–5, 2018, doi: 10.1109/ICTAS.2018.8368766.
R. Alake, “Understanding Cosine Similarity and Its Applications,” builtin.com, 2023. https://builtin.com/machine-learning/cosine-similarity (accessed Jun. 19, 2023).
F. Fataruba, “Penerapan Metode Cosine Similarity Untuk Pengecekan Kemiripan Jawaban Ujian Siswa,” J. Mhs. Tek. Inform., vol. 2, no. 2, pp. 88–95, 2018.
F. Alattar and K. Shaalan, “Emerging Research Topic Detection Using Filtered-LDA,” AI, vol. 2, no. 4, pp. 578–599, 2021, doi: 10.3390/ai2040035.
DOI: https://doi.org/10.31315/telematika.v21i1.10725
DOI (PDF): https://doi.org/10.31315/telematika.v21i1.10725.g6343
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika