Klasifikasi Penyakit Gangguan Jiwa menggunakan Metode Logika Fuzzy
Abstract
Purpose: This research aims to facilitate psychologists in handling individuals with mental disorders by categorizing them based on their symptoms and conditions using fuzzy logic, which mimics the functioning of the human brain.
Design/methodology/approach: The categorization is performed by applying Mamdani fuzzy logic, designed in consultation with psychology experts. Ten initial symptoms each have parameters (Mild, Moderate, and Severe) as input variables, and the output variable involves mental health disorders such as Schizophrenia, Bipolar disorder, Eating disorders, and Anxiety. The fuzzy process employs the Mamdani method with IF-THEN rules and AND operators. The implementation of Mamdani fuzzy logic achieves adequate accuracy in classifying individuals with mental disorders, providing a strong foundation for a more targeted psychological approach. In the context of accuracy, fuzzification analysis for each health disorder can offer further insights.
Findings/result: Results of the study for Schizophrenia, for instance, show a fuzzy diagram membership of approximately 0.4, indicating a potentially high level of thought impairment and interpersonal skills. Weighting for low, medium, and high is then assessed to categorize patients. A similar process is undertaken for Bipolar disorder, with special attention to the middle value and the strong relationship between two input values. Regarding mental illness, membership analysis indicates an increasing level of membership corresponding to condition groups, suggesting compatibility with existing rules.
Originality/value/state of the art: These findings reinforce the Mamdani fuzzy logic implementation as a reliable approach in classifying individuals with mental disorders, with the potential to enhance psychological diagnosis and interventions more effectivelyKeywords
Full Text:
PDFReferences
Solikhun, P. S. Sundari, "Pengujian Jaringan Saraf Tiruan Dalam Mendiagnosa Gangguan Jiwa Menggunakan Algoritma Backpropogation Levenberg-Marquardt". Journal of Information System Research (JOSH), vol. 4, no. 3, pp. 920-927. 2023.
S. Arthur, D. N. Bartholomeus, H. Stimson, "Menjangkau Orang Gangguan Jiwa Dengan Konsep Daud Dalam 1 Samuel 16:23," Jurnal Gamaliel, vol. 3, no. 2, 2021.
F. A. M. Mendrofa, D. I. Iswanty, G. C. Cabral, “Pengaruh Strategi Pelaksanaan Keluarga Terhadap Kekambuhan Pasien ODGJ,” Jurnal Ilmu Keperawatan Jiwa, vol. 5, no. 2, 2022.
J.-E. (Wie) Yusuf, M. Saitgalina, and D. W. Chapman, “Work-life balance and well- being of graduate students,” J. Public Aff. Educ., vol. 26, no. 4, pp. 458–483, 2020.
P. P. P. Sugihartono, N. Hidayat, and T. Tibyani, “Implementasi Metode Fuzzy Tsukamoto Untuk Deteksi Dini Tingkat Depresi Mahasiswa Yang Sedang Menempuh Skripsi (Studi Kasus: Fakultas Ilmu Komputer Universitas Brawijaya),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 10, pp. 3432–3438, 2020.
Z. Zulfa. (2022). Ilmu Keperawatan Jiwa dan Komunitas. Bandung.
Irmayanti, H. R. Mokui, W. O. S. N. Alam, “Sistem Pendeteksi pada Manusia Menggunakan Metode Fuzzy Logic Berbasis Internet of Things,” Jurnal Fokus Elektroda, vol. 7, no. 3, pp. 185-192. 2022.
T. Timotius, J. S. Albertus, P. A. Stephanie, "Pengelompokkan Gangguan Kesehatan Mental Mahasiswa Yang Sedang Menempuh Skripsi Dengan Metode Fuzzy Mamdani," Jurnal Informatika Atma Jogja, vol. 4, no. 1, 2023.
D. L. Rahakbauw, F. J. Rianekuay, Y. A. Lesnussa, "Penerapan Metode Fuzzy Mamdani Untuk Memprediksi Jumlah Produksi Karet," Jurnal Ilmiah Matematika dan Terapan, vol. 16, no. 1, pp. 119-127, 2019.
K. A. Ngii, D. Sabrina, R. A. Saputra, “Implementasi Algoritma Fuzzy C-Means (FCM) Dalam Memprediksi Hasil Tangkapan Ikan Di Kota Kendari,” METHOMIKA : Jurnal Manajemen Informatika & Komputerisasi Akuntansi, vol. 7, no. 2, pp. 319-324, 2023.
H. Basri, M. A. Rosyid, “Aplikasi Pendeteksi Kecanduan Bermain Game Free Fire Berbasis Android Dengan Menggunakan Logika Fuzzy Tsukamoto,” Procedia of Engineering and Life Science, vol. 1, no. 2, 2021.
M. Daffa, Sriani, “Penerapan Logika Fuzzy Sugeno untuk Deteksi Tingkat kerja Depresi Kerja Karyawan,” Jurnal Teknologi Sistem Informasi dan Aplikasi, vo. 6, no. 3, pp. 484-493, 2023.
D. L. Rahakbauw, A. Afriananda, H. W. M. Patty, “Perbandingan Logika Fuzzy Metode Sugeno dan Metode Mamdani untuk Deteksi Dini Penyakit Stroke,” Pure And Applied Mathematics Journal, vol. 3, no. 1, pp. 11-22, 2022.
F. D. Cahyono, E. F. Ginting, D. Rahmadiansyah, “Sistem Pendukung Keputusan Pengadaan Alat kesehatan di Ruangan UGD (Unit Gawat Darurat) dengan Menggunakan Metode Fuzzy Mamdani pada Rumah Sakit Khusus Bedah ACCUPLAST,” Jurnal CyberTech, vol. 3, no. 5, pp. 792-802, 2020.
Nawindah, L. Saskia, "Fuzzy Inference System Untuk Mendeteksi Kesehatan Mental Mahasiswa," Jurnal Ilmiah Teknologi Informasi Terapan, vol. 6, no. 2, 2020.
DOI: https://doi.org/10.31315/telematika.v20i3.11789
DOI (PDF): https://doi.org/10.31315/telematika.v20i3.11789.g6213
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika