Implementation of the Convolutional Neural Network Method in Image Classification of Mount Merapi
Abstract
Purpose: Applying the Convolutional Neural Network method of VGG16 architecture and determining the right hyperparameter combination and knowing the performance of the CNN algorithm accuracy level in classifying Mount Merapi images.
Design/Method/Approach: The Mount Merapi dataset was split with a ratio of 80:10:10 for the division of training, validation, and testing data. Furthermore, 360 x 360 pixels image resizing and 224 x 224 cropping were carried out with the aim of adjusting to the input in the VGG16 model, and min-max normalization was carried out. Next, modeling is done using CNN VGG16 architecture with a hyperparameter testing approach of epoch 10, 20, 30, 40 and 50 with Adam, RMSprop, and SGD optimizers. Then the evaluation is done using confusion matrix
Findings/result: The test results have been carried out with hyperparemeter epoch 10, 20, 30, 40 and 50 with Adam optimizer, RMSprop, and SGD on CNN architecture VGG16. This study obtained an optimal model using epoch 50 with Adam's optimizer which resulted in an accuracy value on test data of 99.15%.
Originality/value/state of the art: Applying a combination of testing optimization algorithms and hyperparameters can result in accuracy that can reach the optimal point.
Keywords
Full Text:
PDFReferences
Rifqi Afif (2020). Pemodelan Pemilahan Citra Gunung Merapi Secara Otomatis Pada BPPTKG Yogyakarta. AUTOMATA.
Randhy Sulistyo Budi, Raditiana Patmasari, Sofia Saidah (2020). Klasifikasi Cuaca Menggunakan Metode Convolutional Neural Network (CNN). eProceedings of Engineering, 48-57.
Athallah Tsany Rakha Dzaky. (2021). Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network. eProceeding of Engineering, 3039–3055.
Ap, G. E. G., Inima, S. H. M., Nocedal, J., Tak, P., & Tang, P. (2017). O N L ARGE -B ATCH T RAINING FOR DEEP LEARNING : 1–16.
Curtis, F. E., & Nocedal, J. (2018). Optimization Methods for Large-Scale Machine Learning ∗. 60(2), 223–311. h.
Eko Hari Rachmawanto, H. P. (2021). Optimasi Ekstraksi Fitur Pada Knn Dalam Klasifikasi Penyakit Daun Jagung. Dinamik, 58 - 67.
Evan Tanuwijaya, A. R., 2021. Modifikasi Arsitektur VGG16 untuk Klasifikasi Citra Digital Rempah-Rempah Indonesia. Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, Volume 21.
Felix, S. F. (2019). Implementasi Cnn Dan Svm Untuk Identifikasi Penyakit Tomat Via Daun . Jurnal Sifo Mikroskil, 20, 117-134.
Fittria Shofrotun Ni’mah, T. S. (2018). Identifikasi Tumbuhan Obat Herbal Berdasarkan Citra Daun Menggunakan Algoritma Gray Level Co-Occurence Matrix Dan K-Nearest Neighbor. Jurnal Teknologi Dan Sistem Komputer, 51-56.
Gittaly Dhingra, V. K. (2019). A Novel Computer Vision Based Neutrosophic Approach For Leaf Disease Identification And Classification. Measurement, 782-794.
Haksoro, E. I., & Setiawan, A. (2022). Pengenalan Jamur yang Dapat Dikonsumsi Menggunakan Metode Transfer Learning pada Convolutional Neural Network. Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi Dan Komputer, 5(2), 81–91.
Liantoni, F. (2015). Klasifikasi Daun Dengan Perbaikan Fitur Citra Menggunakan Metode K-Nearest Neighbor. Ultimatics.
Mohammad Farid Naufal. (2021). Analisis Perbandingan Algoritma SVM, KNN, Dan CNN Untuk Klasifikasi Citra Cuaca. Jurnal Teknologi Informasi dan Komputer.
Mohammad Farid Naufal. (2021). Analisis Perbandingan Algoritma SVM, KNN, Dan CNN Untuk Klasifikasi Citra Cuaca. Jurnal Teknologi Informasi dan Komputer.
Ritonga, I. G. ., Rosnelly, R. ., Manalu, P. D. ., Tamba, T. ., & Wau, K. . (2023). Klasifikasi Citra Cuaca Menggunakan Inception-V3 dan K-Nearest Neighbors. JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP), 6(2), 118-122.
DOI: https://doi.org/10.31315/telematika.v21i1.12082
DOI (PDF): https://doi.org/10.31315/telematika.v21i1.12082.g6348
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika