Ensembled Voting Techniques for Advanced Breast Cancer Prediction

Riska Kurnia Septiani, Yan Rianto

Abstract


Breast cancer is the most common type of cancer affecting women worldwide, with a significant increase in incidence rates each year. Information and Communication Technology (ICT) has made substantial contributions to the medical field, particularly through the use of Big Data and machine learning algorithms to enhance diagnostic accuracy and healthcare efficiency. This research aims to assess the performance of five breast cancer classification algorithms: Support Vector Machine (SVM), Decision Tree (C4.5), k-Nearest Neighbors (k-NN), Logistic Regression, and Ensembled Voting, using the Breast Cancer Wisconsin (Diagnostic) dataset. The study findings indicate that all models achieved high levels of accuracy, precision, recall, and F1-Score, with Ensembled Voting reaching the highest accuracy of 98.57%. This study confirms that machine learning algorithms, particularly Ensembled Voting, can be relied upon to improve breast cancer diagnosis accuracy, thereby significantly contributing to better healthcare outcomes.


Keywords


Breast Cancer; Machine Learning; Ensembled Voting

Full Text:

PDF

References


Y. R. Putri et al., “Konsep Analisis Adaptasi Psikologis Pada Fase Awal Kanker Payudara,” J. Endur., vol. 7, no. 1, pp. 192–198, 2022, doi: 10.22216/jen.v7i1.839.

H. Asri, H. Mousannif, H. Al Moatassime, and T. Noel, “Using Machine Learning Algorithms for Breast Cancer Risk Prediction and Diagnosis,” Procedia Comput. Sci., vol. 83, no. Fams, pp. 1064–1069, 2016, doi: 10.1016/j.procs.2016.04.224.

S. Laghmati, S. Hamida, K. Hicham, B. Cherradi, and A. Tmiri, An improved breast cancer disease prediction system using ML and PCA, vol. 83, no. 11. 2024. doi: 10.1007/s11042-023-16874-w.

D. Muriyatmoko, A. Musthafa, and M. H. Wijaya, “Klasifikasi Profil Kelulusan Nilai AKPAM Dengan Metode Decision Tree,” no. April, 2024.

P. Simamora, S. A. Pasaribu, and V. Wijaya, “Peningkatan dan Optimalisasi Prediksi Harga Emas Menggunakan Metode Combine Machine Learning Random Forest dan Gradient Boosting,” vol. 01, pp. 42–51, 2024.

J. Ilmiah and T. Informasi, “SUBMIT PREDICTION OF PATIENTS INDICATED WITH HEART DISEASE USING,” vol. 4, no. 1, pp. 19–23, 2024.

K. Kristiawan and A. Widjaja, “Perbandingan Algoritma Machine Learning dalam Menilai Sebuah Lokasi Toko Ritel,” J. Tek. Inform. dan Sist. Inf., vol. 7, no. 1, pp. 35–46, 2021, doi: 10.28932/jutisi.v7i1.3182.

S. Y. Pangestu, Y. Astuti, and L. D. Farida, “Algoritma Support Vector Machine Untuk Klasifikasi Sikap Politik Terhadap Partai Politik Indonesia,” J. Mantik Penusa, vol. 3, no. 1, pp. 236–241, 2019, [Online]. Available: https://t.co/eF

S. A. Pratiwi, A. Fauzi, S. Arum, P. Lestari, and Y. Cahyana, “KLIK: Kajian Ilmiah Informatika dan Komputer Prediksi Persediaan Obat Pada Apotek Menggunakan Algoritma Decision Tree,” Media Online, vol. 4, no. 4, pp. 2381–2388, 2024, doi: 10.30865/klik.v4i4.1681.

A. Naufal Hilmi et al., “Implementasi Algoritma K-Nearest Neighbor (KNN) untuk Identifikasi Penyakit pada Tanaman Jeruk Berdasarkan Citra Daun,” no. 2, pp. 107–117, 2024, [Online]. Available: https://doi.org/10.62951/router.v2i2.78

Brury Barth Tangkere, “Analisis Performa Logistic Regression dan Support Vector Classification untuk Klasifikasi Email Phising,” J. Ekon. Manaj. Sist. Inf., vol. 5, no. 4, pp. 442–450, 2024, doi: 10.31933/jemsi.v5i4.1916.

S. Mahmuda, “Implementasi Metode Random Forest pada Kategori Konten Kanal Youtube,” J. Jendela Mat., vol. 2, no. 01, pp. 21–31, 2024, doi: 10.57008/jjm.v2i01.633.

M. Fadel, Z. Arifin, G. Triyono, T. Faculty, and U. Budi, “Application of Ensemble Method for Employee Turnover Penerapan Metode Ensemble Untuk Prediksi Turnover,” vol. 5, no. 3, pp. 767–775, 2024.

I. T. Batam, I. T. Batam, A. Jl, G. Mada, K. V. City, and T. A. Sekupang, “Analisis Ramalan Cuaca di Sekupang , Kota Batam Menggunakan Algoritma Decision Tree dan Confusion Matrix Fitrianingsih ( KBBI ), keadaan , udara ( tentang suhu , cahaya matahari , kelembaban , kecepatan angin , dan,” no. 4, 2024.

A. Muhaimin, M. Amin Hariyadi, and M. I. Imamudin, “Klasifikasi Prestasi Akademik Siswa Berdasarkan Nilai Rapor dan Kedisiplinan dengan Metode K-Nearest Neighbor,” J. Ilmu Komput. dan Sist. Inf., vol. 7, no. 1, pp. 193–202, 2024, doi: 10.55338/jikomsi.v7i1.2865.




DOI: https://doi.org/10.31315/telematika.v21i2.13004

DOI (PDF): https://doi.org/10.31315/telematika.v21i2.13004.g6668

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika
slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor