PENENTUAN POHON RENTANG MINIMUM BERDASARKAN KONDISI GEOGRAFIS SUATU WILAYAH DENGAN ALGORITMA PRIM
Abstract
Determination of the minimum spanning tree are widely used to solve optimization
problems of finding solutions to problems that require minmum. In the electricity distribution
network, minimum spanning tree (MST) is used to find the minimum length of cable for
electricity network system becomes more optimal. Minimum weight of a MST primary
distribution power network is strongly influenced by the geographical conditions of a region in
the form of contour data. This research was done by designing a model of primary distribution
power network graph in accordance with the data obtained. In finding the minimum weight for
each side of the network graph should include parameters elevation, high point / node, and the
distance between points / nodes. Furthermore, the graph is done by computer calculation and
simulation to get the electricity distribution network primary MST using Prim's algorithm with the
help of ArcView GIS 3.3 program through the avenue script.
Prim's algorithm included in the category of good or efficient algorithms, because the
shape of polynomial time complexity in n, where n is a measure of the number of vertices or
sides. Based on the test results have shown that the algorithm Prim MST ability to determine
the primary distribution grid is much better if based on the geographical conditions of a region.
In addition, Prim's algorithm graph computation time in generating the MST based on the data
that is not based on the contour and contour data are quadratic.
Keywords: minimum spanning tree, prim's algorithm, contours, complexity time
Full Text:
PDF (Bahasa Indonesia)References
Gloor, P. A., Johnson, D. B., Makedon, F., Metaxas, P., (1993), A Visualization System for Correctness Proofs of Graph Algorithms, http://www.wellesley.edu/CS/pmetaxas/visual_proofs.pdf, Computer Science Education, [19 Maret 2010].
Greenberg, H. J., (1998), Greedy Algorithm for Minimum Spanning Tree,http://glossary.computing.society.informs.org/notes/spanningtree.pdf, University of Colorado, Denver, [19 Maret 2010].
Hage, (2008), Dunia Listrik: Sistem Distribusi Tenaga Listrik, http://dunialistrik. blogspot.com/2008/12/sistem-distribusi-tenaga-listrik.html, [3 Maret 2009].
Indriati, D., (2000), Minimum Spanning Tree Pada Graf Monge, Tesis Program Studi Matematika, Universitas Gadjah Mada, Yogyakarta.
Kadir, A., (2006), Distribusi dan Utilisasi Tenaga Listrik, Universitas Indonesia Press, Jakarta.
Kristanto, A., (2008), Perancangan Sistem Informasi dan Aplikasinya, Gava Media, Yogyakarta.
Marsudi, D., (2006), Operasi Sistem Tenaga Listrik, Graha Ilmu, Yogyakarta.
Mehta, D. P., Sahni, S., (2005), Handbook of Data Structures and Applications, Chapman & Hall/CRC Computer and Information Science Series, United States of America.
Munir, R., (2009), Matematika Diskrit, Edisi 3, Informatika, Bandung.
Oetomo, B. S., (2002), Perencanaan dan Pembangunan Sistem Informasi, Andi, Yogyakarta.
Pop, P. C., Zelina, I., (2004), Heuristic Algorithms for the Generalized Minimum Spanning Tree Problem, http://emis.library.cornell.edu/ journals/AUA/acta8/Pop_Zelina.pdf, Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics (ICTAMI), Thessaloniki, Greece, [19 Maret 2010].
Prahasta, E., (2004), Sistem Informasi Geografis: ArcView Lanjut Pemrograman Bahasa Script Avenue, Informatika, Bandung.
Prahasta, E., (2009), Sistem Informasi Geografis: Tutorial ArcView, Informatika, Bandung.
Purbasari, I. Y., (2007), Desain Dan Analisis Algoritma, Edisi 1, Graha Ilmu, Yogyakarta.
Purwanto, E. B., (2008), Perancangan Dan Analisis Algoritma, Edisi 1, Graha Ilmu, Yogyakarta.
Zakaria, T. M., Prijono, A., (2006), Konsep Dan Implementasi Struktur Data, Informatika, Bandung
DOI: https://doi.org/10.31315/telematika.v9i1.294
DOI (PDF (Bahasa Indonesia)): https://doi.org/10.31315/telematika.v9i1.294.g256
Refbacks
- There are currently no refbacks.
Status Kunjungan Jurnal Telematika