EKSTRAKSI CIRI MEL FREQUENCY CEPSTRAL COEFFICIENT (MFCC) DAN RERATA COEFFICIENT UNTUK PENGECEKAN BACAAN AL-QUR’AN
Abstract
Abstrak
Belajar membaca Al-Qur’an menggunakan alat bantu aplikasi sangat diperlukan dalam mempermudah dan memahami bacaan Al-Qur’an. Pengecekan bacaan Al-Qur’an salah satu metode dengan MFCC untuk pengenalan suara cukup baik dalam speech recognition.Metode tersebut telah lama diperkenalkan oleh Davis dan Mermelstein sekitar tahun 1980. MFCC merupakan metode ekstraksi ciri untuk mendapatkan cepstral coefficient dan frame sehingga dapat digunakan untuk pemrosesan pengenalan suara agar lebih baik dalam ketepatan. Tahapan MFCC mulai dari pre-emphasis, frame blocking, windowing, Fast Fourier Transform (FFT), Mel Frequency Wrapping (MFW), Discrete Cosine Transoform (DCT) dan cepstral liftreing. Hasil pengecekan bacaan Al-Qur’an diujikan dalam sebelas surat mulai dari surat Al-Fatihah, Al-Baqarah, Al-Imran, Al-Hadid, Al-Ashr, Ar-rahman, Al-Alaq, Al-Kautsar, Al-Ikhlas, Al-Falaq dan An-Nas menghasilkan akurasi sebesar rata-rata 51,8%.
Kata Kunci : Suara, Bacaan, MFCC, Kesesuaian, Ekstraksi Ciri, Referensi, Bobot, Dominan.
Keywords
Full Text:
PDFReferences
Abriyono dan Harjoko, A., 2012. Pengenalan Ucapan Suku Kata Bahasa Lisan Menggunakan Ciri LPC, MFCC, dan JST. Indonesian Journal of Computing and Cybernetics Systems, 6(2), hal.23–34.
Aibinu, A.M., Salami, M.J.E., Najeeb, A.R., Azeez, J.F. dan Rajin, S.M.A.K., 2011a. Evaluating the effect of voice activity detection in isolated Yoruba word recognition system. 2011 4th International Conference on Mechatronics: Integrated Engineering for Industrial and Societal Development, ICOM’11 - Conference Proceedings, (May), hal.17–19.
Barkoni, 2017. Tajwid. Pakar Tajwid.
Bodruzzaman, M., Kuah, K., Jamil, T., Wang, C. dan Li, X., 1993. System Using Artificial Neural Network. , hal.1–3.
Bustami, Fadlisyah, I. mauliza, 2017. Sistem Pendeteksi Kesalahan Dalam Membaca Al-Qur’an Ayat 1-5 Menggunakan Metode Viterbi Bustami,. TECHSI : Jurnal Penelitian Teknik Informatika Vol 9 NO. 1 hal 1-15, Vol 9 No.1, hal.1–15. Available at: http://ojs.unimal.ac.id/index.php/techsi/article/view/205.
Chamidy, T., 2016. Metode Mel Frequency Cepstral Coeffisients (MFCC) Pada klasifikasi Hidden Markov Model (HMM) Untuk Kata Arabic pada Penutur Indonesia. Matics, 8(1), hal.36–39. Available at: http://ejournal.uin-malang.ac.id/index.php/saintek/article/view/3482.
Davis, S.B. dan Mermelstein, P., 1980. Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), hal.357–366.
Holmes, J.H. and W., 2003. Speech Synthesis and Recognition, Second Edition.
Laha, D., 2007. Handbook of Computational Intelligence in Manufacturing and Production Manajemen.
Miftahuddin, Y. dan Hakim, M.R., 2017. Coefficient Dan Dynamic Time Warping Untuk Pengenalan Nada Pada Alat Musik Bellyra. , hal.120–127.
Proakis, J.G. dan Manolakis, D.G., 1996. Digital Signal Processing: Principles, algorithms, and applications, Available at:
https://engineering.purdue.edu/~ee538/DSP_Text_3rdEdition.pdf.
Putra, A.E., 2008. Frekuensi Cuplik pada FFT. Tan Li, Processing, Digital Signal, 1.
Putra, D. dan Adi, R., 2011. Verifikasi Biometrika Suara Menggunakan Metode MFCC dan DTW. Biometrika, Universitas Udayana, 2(1), hal.8–21.
Suyanto, S. dan Putra, A.E., 2014a. Automatic Segmentation of Indonesian Speech into Syllables using Fuzzy Smoothed Energy Contour with Local Normalization, Splitting, and Assimilation. Journal of ICT Research and Applications, 8(2), hal.97–112. Available at: http://journal.itb.ac.id/index.php?li=article_detail&id=1804.
Suyanto, S. dan Putra, A.E., 2014b. Automatic Segmentation of Indonesian Speech into Syllables using Fuzzy Smoothed Energy Contour with Local Normalization, Splitting, and Assimilation. Journal of ICT Research and Applications, 8(2), hal.97–112. Available at: http://journal.itb.ac.id/index.php?li=article_detail&id=1804.
Suyanto dan Hartati, S., 2013. Design of Indonesian LVCSR using Combined Phoneme The Approaches of LVCSR. Icts, hal.191–196.
Tokunbo Ogunfunmi, R.T.M. (Sim) narasimha, 2015. Speech and Audio Processing and Recognition, springer.
Tshilidzi Marwala, 2012. Condition Monitoring Using Computational Intelligence Methods.
Vladimir Britanak, Patrick C.Yip, K.R.R., 2007. Discrete Cosine and Sine Transform.
Zarkasyi I, 1995. Pelajaran Tajwid. Gontor Ponorogo, Trimurti P, hal.Hal 1-3.
DOI: https://doi.org/10.31315/telematika.v15i2.3123
DOI (PDF): https://doi.org/10.31315/telematika.v15i2.3123.g2455
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika