Good Morning to Good Night Greeting Classification Using Mel Frequency Cepstral Coefficient (MFCC) Feature Extraction and Frame Feature Selection

Heriyanto Heriyanto

Abstract


Purpose:

Select the right features on the frame for good accuracy

Design/methodology/approach:

Extraction of Mel Frequency Cepstral Coefficient (MFCC) Features and Selection of Dominant Weight Normalized (DWN) Features

Findings/result:

The accuracy results show that the MFCC method with the 9th frame selection has a higher accuracy rate of 85% compared to other frames.

Originality/value/state of the art:

Selection of the appropriate features on the frame.

Keywords


extraction of features; features; frames; cepstral coefficient; linear

Full Text:

PDF


DOI: https://doi.org/10.31315/telematika.v18i1.4495

DOI (PDF): https://doi.org/10.31315/telematika.v18i1.4495.g3348

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika