Good Morning to Good Night Greeting Classification Using Mel Frequency Cepstral Coefficient (MFCC) Feature Extraction and Frame Feature Selection
Heriyanto Heriyanto
Abstract
Purpose:
Select the right features on the frame for good accuracyDesign/methodology/approach:
Extraction of Mel Frequency Cepstral Coefficient (MFCC) Features and Selection of Dominant Weight Normalized (DWN) FeaturesFindings/result:
The accuracy results show that the MFCC method with the 9th frame selection has a higher accuracy rate of 85% compared to other frames.Originality/value/state of the art:
Selection of the appropriate features on the frame.
Keywords
extraction of features; features; frames; cepstral coefficient; linear
DOI:
https://doi.org/10.31315/telematika.v18i1.4495
DOI (PDF):
https://doi.org/10.31315/telematika.v18i1.4495.g3348
Refbacks
- There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright of :TELEMATIKA: Jurnal Informatika dan Teknologi InformasiISSN 1829-667X (print); ISSN 2460-9021 (online)Dipublikasi olehJurusan Teknik Informatika, UPN Veteran YogyakartaJl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)Telp: +62 274 485786email: jurnaltelematika@upnyk.ac.id
Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
Status Kunjungan Jurnal Telematika