K-Means Algorithm and Binary Search on FiBuSI
Abstract
Purpose: Create an application called FiBuSI (Find Business and Stock Investment) using the k-means algorithm and binary search for data search features. This application is intended for entrepreneurs and investors where they can interact with each other to build a joint business.
Method: Using the RAD (Rapid Application Development) Method which focuses on system testing based on user experience related to Blackbox Testing using the Katalon Studio tools for testing functions on the FiBuSI application.
Result: Based on the results of testing the FiBuSI application which focuses on the success of application functions and algorithm implementation, that each application function is successfully executed (PASSED) based on testing using the Katalon Studio tools. Meanwhile, testing the k-means algorithm (data filter) and binary search (search for letter data) was also successfully carried out by testing it directly by the user on the FiBuSI application and also using the results from the Katalon Studio tools.
State of the art: Based on several studies that have been done previously related to the use of the k-means algorithm and binary search that this algorithm is carried out on 2 different features but in 1 application for business data search. In concept, the FiBuSI application focuses on bringing together entrepreneurs and investors in one platform.
Keywords
Full Text:
PDFReferences
M. R. Muttaqin and M. Defriani, “Algoritma K-Means untuk Pengelompokan Topik Skripsi Mahasiswa,” Ilk. J. Ilm., vol. 12, no. 2, pp. 121–129, 2020, doi: 10.33096/ilkom.v12i2.542.121-129.
M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A comprehensive survey and performance evaluation,” Electron., vol. 9, no. 8, pp. 1–12, 2020, doi: 10.3390/electronics9081295.
S. Morshtein, R. Ettinger, and S. Tyszberowicz, “Verifying time complexity of binary search using Dafny,” Electron. Proc. Theor. Comput. Sci. EPTCS, vol. 338, pp. 68–81, 2021, doi: 10.4204/EPTCS.338.9.
A. E. Pramitasari and Y. Nataliani, “Perbandingan Clustering Karyawan Berdasarkan Nilai Kinerja Dengan Algoritma K-Means Dan Fuzzy C-Means,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 3, pp. 1119–1132, 2021, doi: 10.35957/jatisi.v8i3.957.
F. M. Javed Mehedi Shamrat, Z. Tasnim, I. Mahmud, N. Jahan, and N. I. Nobel, “Application of k-means clustering algorithm to determine the density of demand of different kinds of jobs,” Int. J. Sci. Technol. Res., vol. 9, no. 2, pp. 2550–2557, 2020.
C. Yuan and H. Yang, “Research on K-Value Selection Method of K-Means Clustering Algorithm,” J, vol. 2, no. 2, pp. 226–235, 2019, doi: 10.3390/j2020016.
S. Aulia, “Klasterisasi Pola Penjualan Pestisida Menggunakan Metode K-Means Clustering (Studi Kasus Di Toko Juanda Tani Kecamatan Hutabayu Raja),” Djtechno J. Teknol. Inf., vol. 1, no. 1, pp. 1–5, 2021, doi: 10.46576/djtechno.v1i1.964.
R. M. Fitrian et al., “Digital Dictionary Using Binary Search Algorithm,” J. Phys. Conf. Ser., vol. 1255, no. 1, 2019, doi: 10.1088/1742-6596/1255/1/012058.
I. K. A. Wijaya, G. R. Dantes, and I. M. Candiasa, “Implementasi Sistem Pendukung Keputusan Pemilihan Guru dan Siswa Berprestasi dengan Kombinasi Metode Analytical Hierarchy Process dan Technique for Order Preference by Similarity to Ideal Solution,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 2, p. 77, 2021, doi: 10.23887/janapati.v10i2.29386.
M. Syarif, E. B. Pratama, U. Bina, S. Informatika, and K. Barat, “Testing dan Pemodelan Diagram Uml Pada Aplikasi Veterinary Services Yang Dikembangkan Dengan Model Waterfakk,” J. Tek. Inform. Kaputama, vol. 5, no. 2, pp. 253–258, 2021.
DOI: https://doi.org/10.31315/telematika.v18i3.6300
DOI (PDF): https://doi.org/10.31315/telematika.v18i3.6300.g4269
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika