Mask Detection System Using Convolutional Neural Network Method on Surveillance Camera

I Made Dwi Putra Asana, Gede Aldhi Pradana, I Putu Susila Handika, Santi Ika Murpratiwi

Abstract


The Covid-19 has been an epidemic that has taken the world by storm since the beginning of 2020. This Covid-19 outbreak can spread easily through the air. Because Covid-19 can transmit easily, the government implements new behavior based on an adaption to develop a clean and healthy lifestyle which is often called the new normal. One way to live the new normal is to wear a mask when leaving the house. To help increase public awareness in using masks, numerous technology- based studies have been carried out. This article explain an application using the python programming language that applies digital image processing in terms of detecting the use of masks using Deep Learning with the Convolutional Neural Network (CNN) method to classify data that has been labeled using the supervised learning method. In designing this CNN architectural model, a total of 2110 images of people wearing and without wearing masks will be used, this dataset will be divided into 2 parts, with a rate of 8020, where 80 of the dataset will be used as training data, 20 is used as validation data. In testing the model by taking a total of 100 images with a 5050 ratio between face images using masks and not using masks tested using a confusion matrix, it produces 97% of an accuracy rate, 100% of precision rate, and 94% of recall in recognizing facial images that use masks and don't use masks

 


Keywords


Covid-19; Convolutional Neural Network; Deep Learning; Mask Detection; Computer Vision

Full Text:

PDF

References


S. Mashabi, “UDPATE: Tambah 2.385 Orang, Kasus Covid-19 Indonesia Capai 1.736.670 Artikel ini telah tayang di Kompas.com dengan judul ‘UDPATE: Tambah 2.385 Orang, Kasus Covid-19 Indonesia Capai 1.736.670’, Klik untuk baca: https://nasional.kompas.com/read/2021/05/15/1,” nasional.kompas.com, 2021. .

Gubernur Bali, “PENERAPAN DISIPLIN DAN PENEGAKAN HUKUM PROTOKOL KESEHATAN SEBAGAI UPAYA PENCEGAHAN DAN PENGENDALIAN CORONA VIRUS DISEASE 2019 DALAM TATANAN KEHIDUPAN ERA BARU,” Peratur. GUBERNUR BALI NOMOR 10 TAHUN 2021, vol. 1, p. 6, 2021.

D. Bhatt et al., “CNN Variants for Computer Vision: History, Architecture, Application, Challenges and Future Scope,” Electronics, vol. 10, no. 20, p. 2470, Oct. 2021, doi: 10.3390/electronics10202470.

A. Ghosh, A. Sufian, F. Sultana, A. Chakrabarti, and D. De, “Fundamental Concepts of Convolutional Neural Network,” 2020, pp. 519–567.

T. Nurhikmat, “Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (CNN) Pada Citra Wayang Golek,” 2018.

M. N. A. Alqumboz and S. S. Abu-naser, “Lemon Classification Using Deep Learning,” vol. 3, no. 12, pp. 30–34, 2019.

M. Wang, Z. Wang, and J. Li, “Deep convolutional neural network applies to face recognition in small and medium databases,” in 2017 4th International Conference on Systems and Informatics (ICSAI), Nov. 2017, pp. 1368–1372, doi: 10.1109/ICSAI.2017.8248499.

R. Lubis, “Machine Learning ( Convolutional Neural Networks ) for Face Mask Detection in Image and Video,” pp. 1–20, 2020.

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks: an overview and application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629, Aug. 2018, doi: 10.1007/s13244-018-0639-9.

K. Shridhar et al., “Probact: A probabilistic activation function for deep neural networks,” arXiv Prepr. arXiv1905.10761, 2019.

S. Sharma, “Activation functions in neural networks,” Towar. data Sci., vol. 6, 2017.

P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001, 2001, vol. 1, pp. I--I.

S. P. Shulur, “Perancangan Aplikasi Deteksi Wajah Menggunakan Algoritma Viola-Jones,” Univ. Pas. Bandung, 2015.

F. M. Javed Mehedi Shamrat, A. Majumder, P. R. Antu, S. K. Barmon, I. Nowrin, and R. Ranjan, “Human Face Recognition Applying Haar Cascade Classifier,” 2022, pp. 143–157.

L. Cuimei, Q. Zhiliang, J. Nan, and W. Jianhua, “Human face detection algorithm via Haar cascade classifier combined with three additional classifiers,” in 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), Oct. 2017, pp. 483–487, doi: 10.1109/ICEMI.2017.8265863.

M. Raharjo, F. Ilhamullah, I. Muharrom, and Lathar, “SISTEM DETEKSI WAJAH DAN SEBUAH BENDA MENGGUNAKAN ALGORITMA VIOLA-JONES BERBASIS OPEN CV,” 2020.

I. Markoulidakis, I. Rallis, I. Georgoulas, G. Kopsiaftis, A. Doulamis, and N. Doulamis, “Multiclass Confusion Matrix Reduction Method and Its Application on Net Promoter Score Classification Problem,” Technologies, vol. 9, no. 4, p. 81, Nov. 2021, doi: 10.3390/technologies9040081.

Mohan Patro and M. Ranjan Patra, “A Novel Approach to Compute Confusion Matrix for Classification of n-Class Attributes with Feature Selection,” Trans. Mach. Learn. Artif. Intell., 2015, doi: 10.14738/tmlai.32.1108.




DOI: https://doi.org/10.31315/telematika.v19i2.7246

DOI (PDF): https://doi.org/10.31315/telematika.v19i2.7246.g4673

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika