Forecasting Performance of Double Exponential Smoothing Model and ETS Model for Predicting Crude Oil Prices
Abstract
Purpose: This study aims to predict the price of monthly crude oil quickly and accurately by using an easy model and with easily available software.
Design/methodology/approach: This study compares the DES-Holts and ETS models to predict price of monthly crude oil.
Findings/result: The results of this study recommend the ETS(M,N,N) model to predict the price of monthly crude oil which produces an accuracy value of RMSE and MAPE of 4.385812 and 6.499007 %, respectively.
Originality/value/state of the art: This study implements the DES_Holt's and ETS models to predict price of monthly crude oil with an RMSE and MAPE forecasting accuracy that has never been done in previous studies.
Keywords
Full Text:
PDFReferences
Daftar Pustaka
H. Purwanto, Adiguna, R.K. Rustam & B.A. Budiarto, " Pemanfaatan Minyak Mentah (Crude Oil) Untuk Meningkatkan Stabilisasi Jalan Tanah Pada Daerah Makarti Jaya Kabupaten Banyuasin", JURNAL DEFORMASI, 4(2), pp. 64-72, 2019.
X. Li, W. Shang, and S. Wang, ‘Text-based crude oil price forecasting: A deep learning approach’, International Journal of Forecasting, 35(4), pp. 1548–1560. 2019
Y-X. Wu, Q.B. Wu, and J.Q., Zhu.‘Improved EEMD-based crude oil price forecasting using LSTM networks’, Physica A: Statistical Mechanics and its Applications, 516, pp. 114–124., 2019.
Y. Huang, and Y. Deng,‘A new crude oil price forecasting model based on variational mode decomposition’, Knowledge-Based Systems, 213, p. 106669. 2021
T. Zhang, et al.‘Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm’, Energy, 229, p. 120797, 2021
M.A., Laiba Sultan Dar, et al.‘Forecasting crude oil prices volatility by reconstructing EEMD components using ARIMA and FFNN models’. 2022
Z. Zhao, et al. ‘A Novel Multivariate Decomposition Ensemble Model with News Text for Crude Oil Price Forecasting’, Available at SSRN 4186710 [Preprint]. 2022
S. Herawati & A. Djunaidy, “Peramalan Harga Minyak Mentah Menggunakan Gabungan Metode Ensemble Empirical Mode Decomposition (EEMD) dan Jaringan Syaraf Tiruan”, Jurnal SimanteC, 4(1), p. 61-69, 2014.
S.A. Ramzi & H. Mouloud, “Predict Crude Oil Prices in The International Market an Alternative Forecasting Technique”, International Journal of Financial Management (IJFM), 5(4), p.23-36, 2016.
S. Setyowibowo, M. As’ad, Sujito & E. Farida, “Prediksi Indek Harga Konsumen Kota Malang Dengan Model Exponensial Smoothing-State Space”, Jurnal Dinamika Dotcom, 13(1), p.41-47, 2022.
S. Makridakis, S.C. Wheelwright & R.J. Hyndman, Forecasting: Methods and Applications , John Wiley & Sons, Inc. 1998.
M. As’ad, Sujito, S. Setyowibowo, “ Peramalan Harga Emas Harian dengan Model Hibrida Double Exponensial Smoothing Holt's dan Jaringan Syaraf Tiruan”, Jurnal Ilmiah KOMPUTASI, 19(1), p.51-58, 2020.
C. A. Jofipasi, Miftahuddin & Hizir, “Selection for the best ETS (error, trend, seasonal) model to forecast weather in the Aceh Besar District”, The 7th AIC-ICMR on Sciences and Engineering, I O Publising. Conf. Ser.: Mater. Sci. Eng. 352 012055, 2017, doi:10.1088/1757-899X/352/1/012055.
R. J. Hyndman, A. B. Koehler, J. K. Ord & R.D. Snyder, “Forecasting with Exponential Smoothing the State Space Approach”, Germany: Springer, 2008.
E. Farida, M. As’ad, Sujito, S.Setyowibowo, “ Metode Extrem Learning Machine Untuk Meramalkan Harga Emas Harian Saat Pandemi Covid-19, Jurnal Ilmiah KOMPUTASI, 21(1), p.123-131, 2022.
I. Nabila & I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut”, Journal of Information System, 5(2). P. 250-255. 2020, DOI: 10.33633/joins.v5i2.3900
R. J. Hyndman, Y. Khandakar, “Automatic Time Series Forecasting: The forecast Package for R”, Journal of Statistical Software, vol. 27, no. 3, 2008.
https://cran.r-project.org/. Acessed 25 January 2022.
DOI: https://doi.org/10.31315/telematika.v20i2.8104
DOI (PDF): https://doi.org/10.31315/telematika.v20i2.8104.g5664
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika