Application Random Forest Method for Sentiment Analysis in Jamsostek Mobile Review
Abstract
Purpose: This study aims to monitor the service quality of JMO applications from time to time by classifying JMO user reviews into the class of positive, neutral, and negative sentiments.
Design/methodology/approach : The method used in this study is the random forest classification method. Data processing in this study uses feature extraction, TF-IDF and labeling with the lexicon-based method.
Findings/result: Based on the research results, it was found that the highest frequency of classification was the positive class with 17571 reviews compared to the neutral class with 8701 reviews and the negative class with 3876 reviews with an accuracy evaluation value of 93%, precision 88%, recall 93%, and f1-score 90%.
Originality/value/state of the art:
This study uses 150737 reviews that have been pre-processed using the random forest method and TF-IDF and lexicon-based feature extraction.
Keywords
Full Text:
PDFReferences
N. C. Agustina, D. Herlina Citra, W. Purnama, C. Nisa, and A. Rozi Kurnia, “Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store,” vol. 2, no. April, pp. 47–54, 2022.
B. S. Arisoemaryo et al., “Analisis Tingkat Kepuasan Pengguna Aplikasi Jamsostek Mobile Menggunakan Metode End User Computing Satisfaction,” vol. 4, no. 1, pp. 110–117, 2022, [Online]. Available: https://ejurnal.ars.ac.id/index.php/jti/article/view/724
I. Fahlevi, “Efektivitas Aplikasi Jamsostek Mobile ( JMO ) Dalam Proses Pencairan Jaminan Hari Tua ( JHT ) Kepada Peserta BPJS Ketenagakerjaan Cabang Meulaboh,” vol. 6, 2022.
N. F. Fano, “Pembuatan Model Pemeringkatan Ulasan Menggunakan Metode Random Forest Regression,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 8, no. 2, pp. 664–675, 2021, doi: 10.35957/jatisi.v8i2.777.
M. Farkhan, D. Samudera, and V. I. Pertiwi, “Inovasi Pelayanan Publik Melalui Jamsostek Mobile (Jmo) (Studi Kasus Di Bpjs Ketenagakerjaan Cabang Rungkut Kota Surabaya),” JPAP (Jurnal Penelit. Adm. Publik), vol. 8, no. Vol 8 No 1 (2022): Jurnal Penelitian Administrasi Publik (JPAP), pp. 152–172, 2022.
Y. Al Amrani, M. Lazaar, and K. E. El Kadirp, “Random forest and support vector machine based hybrid approach to sentiment analysis,” Procedia Comput. Sci., vol. 127, pp. 511–520, 2018, doi: 10.1016/j.procs.2018.01.150.
A. Ahmed Shokeralla, F. Al Rahman Idress Al Sameeh, A. Gibreel Mohammed Musa, F. ELrhman Elsmih, and A. A. Shokeralla, “Prediction the daily number of confirmed cases of covid-19 in Sudan with arima and holt winter exponential smoothing,” Artic. Int. J. Dev. Res., no. August, 2020, doi: 10.37118/ijdr.19811.08.2020.
J. Y. B. Yin, N. H. M. Saad, and Z. Yaacob, “Exploring Sentiment Analysis on E-Commerce Business: Lazada and Shopee,” TEM J., vol. 11, no. 4, pp. 1508–1519, 2022, doi: 10.18421/TEM114-11.
M. Y. Aldean, P. Paradise, and N. A. Setya Nugraha, “Analisis Sentimen Masyarakat Terhadap Vaksinasi Covid-19 di Twitter Menggunakan Metode Random Forest Classifier (Studi Kasus: Vaksin Sinovac),” J. Informatics, Inf. Syst. Softw. Eng. Appl., vol. 4, no. 2, pp. 64–72, 2022, doi: 10.20895/inista.v4i2.575.
I. N. Kabiru, P. K. Sari, S. Prodi, and M. Bisnis, “Analisa Konten Media Sosial E-Commerce Pada Instagram Menggunakan Metode Sentimen Analysis Dan Lda-Based Topic Modeling ( Studi Kasus : Shopee Indonesia ) Analysis of Content Social Media E-Commerce in Instagram Using Sentiment Analysis and Lda Based Topi,” e-Proceeding Manag., vol. 6, no. 1, pp. 12–19, 2019.
Y. Kelpin and K. Ardila, “Analysis of User Satisfaction Level Of E-Pkh Application Using End User Computing Satisfaction (EUCS) Method,” Adpebi Sci. Ser., pp. 869–876, 2022, [Online]. Available: http://series.adpebi.com/index.php/AICMEST/article/view/63
T. S. Kasus, P. Pada, and S. Tripadvisor, “Analisis Sentimen Pelanggan Hotel di Purwokerto Menggunaan Metode Random Forest dan TF-IDF,” vol. 8106, pp. 21–29, 2021, doi: 10.20895/INISTA.V3.
E. Fitri, “Analisis Sentimen Terhadap Aplikasi Ruangguru Menggunakan Algoritma Naive Bayes, Random Forest Dan Support Vector Machine,” J. Transform., vol. 18, no. 1, p. 71, 2020, doi: 10.26623/transformatika.v18i1.2317.
O. Somantri and D. Dairoh, “Analisis Sentimen Penilaian Tempat Tujuan Wisata Kota Tegal Berbasis Text Mining,” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, p. 191, 2019, doi: 10.26418/jp.v5i2.32661.
M. Dimas Lutfiyanto, E. B. Setiawan, and S. Si, “Expansion Feature dengan Word2Vec untuk Analisis Sentimen pada Opini Politik di Twitter dengan Klasifikasi Support Vector Machine, Naïve Bayes, dan Random Forest,” vol. 8, no. 5, pp. 10399–10410, 2016.
R. D. Himawan and E. Eliyani, “Perbandingan Akurasi Analisis Sentimen Tweet terhadap Pemerintah Provinsi DKI Jakarta di Masa Pandemi,” J. Edukasi dan Penelit. Inform., vol. 7, no. 1, p. 58, 2021, doi: 10.26418/jp.v7i1.41728.
R. Batra and S. M. Daudpota, “Integrating StockTwits with sentiment analysis for better prediction of stock price movement,” 2018 Int. Conf. Comput. Math. Eng. Technol. Inven. Innov. Integr. Socioecon. Dev. iCoMET 2018 - Proc., vol. 2018-Janua, pp. 1–5, 2018, doi: 10.1109/ICOMET.2018.8346382.
T. Rahman, F. E. M. Agustin, and N. F. Rozy, “Normalization of Unstructured Indonesian Tweet Text for Presidential Candidates Sentiment Analysis,” 2019 7th Int. Conf. Cyber IT Serv. Manag. CITSM 2019, 2019, doi: 10.1109/CITSM47753.2019.8965324.
Y. Azhar, “Metode Lexicon-Learning Based Untuk Identifikasi Tweet Opini Berbahasa Indonesia,” J. Nas. Pendidik. Tek. Inform., vol. 6, no. 3, p. 237, 2018, doi: 10.23887/janapati.v6i3.11739.
F. Amaliah and I. K. Dwi Nuryana, “Perbandingan Akurasi Metode Lexicon Based Dan Naive Bayes Classifier Pada Analisis Sentimen Pendapat Masyarakat Terhadap Aplikasi Investasi Pada Media Twitter,” J. Informatics Comput. Sci., vol. 3, no. 03, pp. 384–393, 2022, doi: 10.26740/jinacs.v3n03.p384-393.
A. S. Neogi, K. A. Garg, R. K. Mishra, and Y. K. Dwivedi, “Sentiment analysis and classification of Indian farmers’ protest using twitter data,” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100019, 2021, doi: 10.1016/j.jjimei.2021.100019.
D. Irawan, E. B. Perkasa, Y. Yurindra, D. Wahyuningsih, and E. Helmud, “Perbandingan Klassifikasi SMS Berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier,” J. Sisfokom (Sistem Inf. dan Komputer), vol. 10, no. 3, pp. 432–437, 2021, doi: 10.32736/sisfokom.v10i3.1302.
A. N. Izza, D. E. Ratnawati, W. Hayuhardhika, N. Putra, U. Brawijaya, and P. Korespondensi, “Analisis Sentimen Objek Wisata Di Provinsi Sulawesi Sentiment Analysis of Tourist Attractions in the Province of South Sulawesi Based on Visitor Reviews,” vol. 3, no. 2, pp. 97–105, 2022.
DOI: https://doi.org/10.31315/telematika.v20i1.8868
DOI (PDF): https://doi.org/10.31315/telematika.v20i1.8868.g5404
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika