Digital Image Processing to Detect Cracks in Buildings Using Naïve Bayes Algorithm (Case Study: Faculty of Engineering, Halu Oleo University)
Abstract
Purpose: To detect cracks in the walls of buildings using digital image processing and the Naïve Bayes Algorithm.
Design/methodology/approach: Using the YCbCr color model for the segmentation process and the HSV color model for the feature extraction process. This study also uses the Naïve Bayes Algorithm to calculate the probability of feature similarity between testing data and training data.
Findings/result: Detecting cracks is an important task to check the condition of the structure. Manual testing is a recognized method of crack detection. In manual testing, crack sketches are prepared by hand and deviation states are recorded. Because the manual approach relies heavily on the knowledge and experience of experts, it lacks objectivity in quantitative analysis. In addition, the manual method takes quite a lot of time. Instead of the manual method, this research proposes digital-based crack detection by utilizing image processing. This study uses an intelligent model based on image processing techniques that have been processed in the HSV color space. In addition, this study also uses the YcbCr color space for feature extraction and classification using the Naïve Bayes Algorithm for crack detection analysis on building walls. The accuracy of the research test data reached 88.888888888888890%, while the training data achieved an accuracy of 93.333333333333330%.
Originality/value/state of the art: This study has the same focus as previous research, namely detecting cracks in building walls, but has different methods and is implemented in case studies.
Keywords
Full Text:
PDFReferences
Suparyanto dan Rosad (2015, “済無No Title No Title No Title,” Suparyanto dan Rosad (2015, vol. 5, no. 3, pp. 248–253, 2020.
Hermantoro, A. P. Suryotomo, A. I. Uktoro, and R. A. Renjani, “Unmanned Aerial Vehicle Application for Plantation Mapping and Automatic Oil Palm Trees Counting on Oil Palm Plantation Management,” in International Conference on the Role of Agricultural Engineering for Sustainable Agriculture Production, 2016, no. December, pp. 47–50.
S. Saifullah and V. A. Permadi, “Comparison of Egg Fertility Identification based on GLCM Feature Extraction using Backpropagation and K-means Clustering Algorithms,” in Proceeding - 2019 5th International Conference on Science in Information Technology: Embracing Industry 4.0: Towards Innovation in Cyber Physical System, ICSITech 2019, Oct. 2019, pp. 140–145. doi: 10.1109/ICSITech46713.2019.8987496.
Awang Hendrianto Pratomo, W. Kaswidjanti, and S. Mu’arifah, “Implementasi Algoritma Region of Interest ( ROI ) Untuk Meningkatkan Performa Algoritma Deteksi Dan Klasifikasi Kendaraan,” J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 1, pp. 155–162, 2020, doi: 10.25126/jtiik.202071718.
S. P. Tahalea, “Identifikasi Peran Hero DOTA2 Menggunakan Social Network Analysis,” TEKNOMATIKA, vol. 12, no. 2, pp. 81–86, 2020.
S. P. Tahalea and A. SN, “Central Actor Identification of Crime Group using Semantic Social Network Analysis,” Indones. J. Inf. Syst., vol. 2, no. 1, p. 24, 2019, doi: 10.24002/ijis.v2i1.2354.
I. Setiawan, W. Dewanta, H. A. Nugroho, and H. Supriyono, “Pengolah Citra Dengan Metode Thresholding Dengan Matlab R2014A,” J. Media Infotama, vol. 15, no. 2, 2019, doi: 10.37676/jmi.v15i2.868.
D. Yulianto, R. N. Whidhiasih, and M. Maimunah, “Klasifikasi Tahap Kematangan Pisang Ambon Berdasarkan Warna Menggunakan Naive Bayes,” PIKSEL Penelit. Ilmu Komput. Sist. Embed. Log., vol. 5, no. 2, pp. 60–67, 2018, doi: 10.33558/piksel.v5i2.268.
A. Ciputra, D. R. I. M. Setiadi, E. H. Rachmawanto, and A. Susanto, “Klasifikasi Tingkat Kematangan Buah Apel Manalagi Dengan Algoritma Naive Bayes Dan Ekstraksi Fitur Citra Digital,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 9, no. 1, pp. 465–472, 2018, doi: 10.24176/simet.v9i1.2000.
M. R. Saputra, A. S. R. Ansori, and R. E. Saputra, “Deteksi Kulit Manusia Pada Gambar Menggunakan Algoritma RGB dan HSV,” vol. 8, no. 1, pp. 484–491, 2021.
A. Mohan and S. Poobal, “Crack detection using image processing: A critical review and analysis,” Alexandria Eng. J., vol. 57, no. 2, pp. 787–798, 2018, doi: 10.1016/j.aej.2017.01.020.
M. S. Nasution and N. Fadillah, “Deteksi Kematangan Buah Tomat Berdasarkan Warna Buah dengan Menggunakan Metode YCbCr,” InfoTekJar (Jurnal Nas. Inform. dan Teknol. Jaringan), vol. 3, no. 2, pp. 147–150, 2019, doi: 10.30743/infotekjar.v3i2.1059.
N. D. Hoang, “Detection of Surface Crack in Building Structures Using Image Processing Technique with an Improved Otsu Method for Image Thresholding,” Adv. Civ. Eng., vol. 2018, 2018, doi: 10.1155/2018/3924120.
R. Susun, S. Sewa, C. Pemeliharaan, and D. A. N. Perawatan, “Cara Pemeliharaan Dan Perawatan Material Fasad Vertikal Non Struktural Pada Bangunan Rumah Susun,” Jur. Arsitektur, Fak. Tek. Sipil dan Perenc. Inst. Teknol. Nas. Email, pp. 1–9, 2015.
P. Nabilla, M. F. Saputra, and R. A. Saputra, “Perbandingan Ruang Warna RGB, HSV Dan YCbCr Untuk Segmentasi Citra Ikan Kembung Menggunakan K-Means
DOI: https://doi.org/10.31315/telematika.v20i1.8925
DOI (PDF): https://doi.org/10.31315/telematika.v20i1.8925.g5396
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika