Tweet Analysis of Mental Illness Using K-Means Clustering and Support Vector Machine
Abstract
Purpose: Social media, particularly Twitter, provides a venue for individuals to share their thoughts. The public's perception of mental illnesses is often debated on Twitter. So yet, no evaluation of community tweets connected to data on mental health conditions has been performed. The purpose of this study is to examine tweets linked to mental illnesses in Indonesia in order to identify the themes of conversation and the polarity trends of these tweets.
Design/methodology/approach: To address this issue, the K-Means Clustering algorithm is utilized to aggregate tweet data that is used to find themes of conversation. The emotion polarity value of each cluster result was then determined using the Support Vector Machine (SVM) approach.
Findings/results: This study generated five topic clusters based on tweets about mental illness. While sentiment analysis revealed that all clusters had more negative sentiment classes than positive. Cluster 4 and Cluster 5 had the highest number of negative sentiment values. These clusters emphasize the necessity of consulting with psychiatrists and psychologists if people have mental health disorders, as well as financing for mental health disorder treatment through BPJS Kesehatan services.
Originality/value/state of the art: The analysis was done in two stages: data grouping to find themes of conversation using K-Means clustering and SVM to look for positive and negative polarity values associated to twitter data about mental illness.
Keywords
Full Text:
PDFReferences
D. H. Jayani, “Persebaran Prevalensi Skizofrenia/Psikosis di Indonesia,” databoks. Accessed: Jan. 29, 2024. [Online]. Available: https://databoks.katadata.co.id/datapublish/2019/10/08/persebaran-prevalensi-skizofreniapsikosis-di-indonesia
S. N. Tarmizi, “Kemenkes Perkuat Jaringan Layanan Kesehatan Jiwa di Seluruh Fasyankes – Sehat Negeriku,” Redaksi Sehat Negeriku. Accessed: Mar. 02, 2023. [Online]. Available: https://sehatnegeriku.kemkes.go.id/baca/umum/20221010/4041246/kemenkes-kembangkan-jejaring-pelayanan-kesehatan-jiwa-di-seluruh-fasyankes/
C. M. Annur, “Pengguna Twitter di Indonesia Capai 24 Juta hingga Awal 2023, Peringkat Berapa di Dunia?,” Katadata Media Networks. Accessed: Mar. 08, 2023. [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/02/27/pengguna-twitter-di-indonesia-capai-24-juta-hingga-awal-2023-peringkat-berapa-di-dunia
M. Habibi and K. Kusumaningtyas, “Customer Experience Analysis Skincare Products Through Social Media Data Using Topic Modeling and Sentiment Analysis,” JOURNAL OF SCIENCE AND APPLIED ENGINEERING, vol. 6, no. 1, pp. 1–9, Jun. 2023, doi: 10.31328/JSAE.V6I1.4169.
A. G. Reece, A. J. Reagan, K. L. M. Lix, P. S. Dodds, C. M. Danforth, and E. J. Langer, “Forecasting the onset and course of mental illness with Twitter data,” Scientific Reports 2017 7:1, vol. 7, no. 1, pp. 1–11, Oct. 2017, doi: 10.1038/s41598-017-12961-9.
K. Chanda, S. Roy, H. Mondal, and R. Bose, “To Judge Depression and Mental Illness on Social Media Using Twitter,” Univers J Public Health, vol. 10, no. 1, pp. 116–129, Feb. 2022, doi: 10.13189/UJPH.2022.100113.
S. C. Guntuku, D. B. Yaden, M. L. Kern, L. H. Ungar, and J. C. Eichstaedt, “Detecting depression and mental illness on social media: an integrative review,” Curr Opin Behav Sci, vol. 18, pp. 43–49, Dec. 2017, doi: 10.1016/J.COBEHA.2017.07.005.
M. Habibi and P. W. Cahyo, “Clustering User Characteristics Based on the influence of Hashtags on the Instagram Platform,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 13, no. 4, pp. 399–408, 2019, doi: 10.22146/ijccs.50574.
P. W. Cahyo, “Klasterisasi Tipe Pembelajar Sebagai Parameter Evaluasi Kualitas Pendidikan di Perguruan Tinggi,” Teknomatika, vol. 11, no. 1, pp. 49–55, 2018.
F. B. P. Kencana, R. A. Yuana, and N. A. Pambudi, “Development of a Decision Support System for Clustering Scientific Publications Using K-Means,” International Journal of Progressive Sciences and Technologies, vol. 27, no. 2, pp. 773–783, Jul. 2021, doi: 10.52155/ijpsat.v27.2.3322.
D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, and R. Hidayat, “The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data,” Qual Quant, vol. 56, no. 3, pp. 1283–1291, Jun. 2022, doi: 10.1007/S11135-021-01176-W/FIGURES/3.
M. Habibi and Sumarsono, “Implementation of Cosine Similarity in an automatic classifier for comments,” JISKA (Jurnal Informatika Sunan Kalijaga), vol. 3, no. 2, pp. 38–46, 2018.
A. F. Hidayatullah and M. R. Maarif, “Penerapan Text Mining dalam Klasifikasi Judul Skripsi,” in Seminar Nasional Aplikasi Teknologi Informasi (SNATi) Agustus, Yogyakarta, 2016, pp. 1907–5022.
M. Habibi and P. W. Cahyo, “Journal Classification Based on Abstract Using Cosine Similarity and Support Vector Machine,” 2020. doi: http://dx.doi.org/10.14421/jiska.2020.%25x.
P. W. Cahyo and M. Habibi, “Clustering followers of influencers accounts based on likes and comments on Instagram Platform,” IJCCS (Indonesian Journal of Computing and Cybernetics Systems), vol. 14, no. 2, pp. 199–208, 2020, doi: 10.22146/ijccs.53028.
U. A. Nasron and M. Habibi, “Analysis of Marketplace Conversation Trends on Twitter Platform Using K-Means,” Compiler, vol. 9, no. 1, pp. 51–61, 2020, doi: 10.28989/compiler.v9i1.579.
H. Liu, I. Chatterjee, M. Zhou, X. S. Lu, and A. Abusorrah, “Aspect-Based Sentiment Analysis: A Survey of Deep Learning Methods,” IEEE Trans Comput Soc Syst, vol. 7, no. 6, pp. 1358–1375, Dec. 2020, doi: 10.1109/TCSS.2020.3033302.
R. Diouf, E. N. Sarr, O. Sall, B. Birregah, M. Bousso, and S. N. Mbaye, “Web Scraping: State-of-the-Art and Areas of Application,” Proceedings - 2019 IEEE International Conference on Big Data, Big Data 2019, pp. 6040–6042, Dec. 2019, doi: 10.1109/BIGDATA47090.2019.9005594.
M. Habibi, M. R. Ma’arif, and D. Subekti, “The Development of Social Media Intelligence System for Citizen Opinion and Perception Analysis over Government Policy,” Telematika : Jurnal Informatika dan Teknologi Informasi, vol. 19, no. 1, pp. 31–46, Jul. 2022, doi: 10.31315/TELEMATIKA.V19I1.6447.
Y. Lv, “Student Behavior Analysis System Based on Kmeans Algorithm Under the Background of Smart Campus,” Proceedings - 2022 International Conference on Computer Network, Electronic and Automation, ICCNEA 2022, pp. 174–177, 2022, doi: 10.1109/ICCNEA57056.2022.00047.
R. Y. Rajesh and G. Sindhu, “Predict the Game Analysis of Cricket Match Winning Using K-Nearest Neighbor and Compare Prediction Accuracy Over Support Vector Machine,” Proceedings - 2022 4th International Conference on Advances in Computing, Communication Control and Networking, ICAC3N 2022, pp. 685–689, 2022, doi: 10.1109/ICAC3N56670.2022.10074193.
P. Ebrahimi, A. Salamzadeh, M. Soleimani, S. M. Khansari, H. Zarea, and M. Fekete-Farkas, “Startups and Consumer Purchase Behavior: Application of Support Vector Machine Algorithm,” Big Data and Cognitive Computing 2022, Vol. 6, Page 34, vol. 6, no. 2, p. 34, Mar. 2022, doi: 10.3390/BDCC6020034.
M. Bansal, A. Goyal, and A. Choudhary, “A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning,” Decision Analytics Journal, vol. 3, p. 100071, Jun. 2022, doi: 10.1016/J.DAJOUR.2022.100071.
P. Nagaraj et al., “Automatic and Adaptive Segmentation of Customer in R framework using K-means Clustering Technique,” 2022 International Conference on Computer Communication and Informatics, ICCCI 2022, 2022, doi: 10.1109/ICCCI54379.2022.9741067.
S. Wulandari, “Pentingnya Kesadaran tentang Kesehatan Mental - Diskominfo Prov. Kaltim,” Diskominfo Kaltim. Accessed: Jun. 01, 2023. [Online]. Available: https://diskominfo.kaltimprov.go.id/index.php/kesehatan/pentingnya-kesadaran-tentang-kesehatan-mental
Di. Nita, “4 Langkah ke Psikolog atau Psikiater Pakai BPJS Kesehatan, Akses Pengobatan Gratis,” kompas.com. Accessed: Jun. 01, 2023. [Online]. Available: https://www.kompas.tv/article/387170/4-langkah-ke-psikolog-atau-psikiater-pakai-bpjs-kesehatan-akses-pengobatan-gratis
DOI: https://doi.org/10.31315/telematika.v20i3.9820
DOI (PDF): https://doi.org/10.31315/telematika.v20i3.9820.g6207
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika