Classification of prospective borrowing customers to reduce the risk of bad deposits in sharia cooperatives using the FK-NNC method

Annisa Reza Dhiya'atulhaq, Oliver S. Simanjuntak, Heriyanto Heriyanto

Abstract


Objective: Assisting cooperatives in determining the classification of prospective financing members to reduce non-performing deposits in sharia cooperatives
Design/method/approach: The Fuzzy K-Nearest Neighbor in Every Class method is used to classify prospective financing members. System development using the waterfall method.
Results: Based on the implementation and the results of tests carried out using the confusion matrix, the results show that using the Fuzzy K-Nearest Neighbor in Every Class method can classify prospective financing members with an average accuracy rate of 80% with a value of k=1 to k=10. Stable accuracy results of 80%. It shows that adding k theory to the Fuzzy K-Nearest Neighbor in Every Class method can improve the theory of assigning k values to the previous method, namely K-Nearest Neighbor and Fuzzy K-Nearest Neighbor.
Authenticity/state of the art: Based on previous research carried out, the research themes and characteristics are relatively the same, but in the research conducted, there are differences in terms of the methods used, case study data, preprocessing data, and research outputs. Previous research with the same object, namely the classification of cooperative customers by applying the K-Nearest Neighbor method by determining two classes of classification results, namely traffic jams and smooth, while this study will apply the development of the K-Nearest Neighbor method using the Fuzzy K-Nearest Neighbor in Every method. The class with the output specifies three outcomes: crash, sometimes crash, and smooth. This study uses the data preprocessing stage with fuzzification and data transformation techniques using the min-max normalization method. In contrast, the previous research used the z score normalization method.


Full Text:

PDF

References


Menarianti, I. (2015). Klasifikasi Data Mining Dalam Menentukan Pemberian Kredit Bagi Nasabah Koperasi. 1(1).

I. W. Supriana, M. A. Raharja, and P. W. Gunawan, “Sistem Informasi Prediksi Penilaian Kredit Perbankan Menggunakan Algoritma K-Nearest Neighbor Classification,” JST (Jurnal Sains dan Teknol., vol. 8, no. 1, p. 44, 2019, doi: 10.23887/jst-undiksha.v8i1.16470.

H. Annur and M. E. Lasulika, “Klasifikasi Nasabah Kredit Koperasi Menggunakan Algoritma K-Nearest Neighbor,” J. Inform. Upgris, vol. 5, no. 2, 2019, [Online]. Available: http://journal.upgris.ac.id/index.php/JIU/article/view/4343/0.

E. Prasetyo et al., “Fuzzy K-Nearest Neighbor in Every Class Untuk Klasifikasi Data,” no. Santika, pp. 57–60, 2012.

D. Li, J. S. Deogun, and K. Wang, “Gene Function Classification Using Fuzzy K-Nearest Neighbor Approach,” pp. 644–644, 2008, doi: 10.1109/grc.2007.99.

R. U. Izzah, S. Wahyuningsih, and F. D. T. Amijaya, “Classification of nutritional status of toddlers using fuzzy k-nearest neighbor in every class (FK-NNC),” J. Phys. Conf. Ser., vol. 1277, no. 1, 2019, doi: 10.1088/1742-6596/1277/1/012050.

E. Budianita and W. Prijodiprodjo, “Penerapan Learning Vector Quantization (LVQ) untuk Klasifikasi Status Gizi Anak,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 7, no. 2, p. 155, 2013, doi: 10.22146/ijccs.3354.

H. Junaedi, H. Budianto, I. Maryati, and Y. Melani, “Data Transformation pada Data Mining,” Pros. Konf. Nas. Inov. dalam Desain dan Teknol., vol. 7, pp. 93–99, 2011.

D. T. Larose and C. D. Larose, Discovering Knowledge in Data: An Introduction to Data Mining: Second Edition, vol. 9780470908. 2014.

Santoso, B. Aziz, A.I.S., Zohrahayaty. (2020). Machine Learning & Reasoning Fuzzy Logic Algoritma, Manual & Rapid Miner. Yogyakarta : Deepublisher.

Anton, Howard & Chris Rorres. (2005). Aljabar Linier Elementer edisi 8. Jakarta: Erlangga.

Gorunescu, Florin. 2011. Data Mining: Concepts, Models, and Techniques. Verlag Berlin Heidelberg : Springer

Kusumadewi dan Purnomo. 2010, Aplikasi Logika Fuzzy untuk Sistem Pendukung Keputusan, Ed. 2, Graha Ilmu, Yogyakarta.

Saelan, A. (2009). Logika Fuzzy. Struktur Diskrit, 1(13508029), 1–5.

H. Anton, Elementary Linear Algebra, 7th ed. New Jersey: Wiley, 1993.




DOI: https://doi.org/10.31315/cip.v1i1.6125

___________________________________________________________
Computing and Information Processing Letters
ISSN
Published by Department of Informatics, Universitas Pembangunan Naisonal Veteran Yogyakarta
W : http://jurnal.upnyk.ac.id/index.php/cip/index
E : shoffans@upnyk.ac.id, shoffans@ascee.org

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

View My Stats