Investigasi Efisiensi Penghambatan Korosi Senyawa Quinoxaline Berbasis Machine Learning
Abstract
Keywords
Full Text:
PDFReferences
Akrom, M. (2022). Investigation Of Natural Extracts As Green Corrosion Inhibitors In Steel Using Density Functional Theory. In Jurnal Teori dan Aplikasi Fisika (Vol. 10, Issue 01).
Akrom, M., Rustad, S., & Kresno Dipojono, H. (2023). Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors. Results in Chemistry, 101126. https://doi.org/10.1016/J.RECHEM.2023.101126
Akrom, M., Rustad, S., Saputro, A. G., & Dipojono, H. K. (2023). Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors. Computational and Theoretical Chemistry, 1229, 114307. https://doi.org/10.1016/J.COMPTC.2023.114307
Akrom, M., Rustad, S., Saputro, A. G., Ramelan, A., Fathurrahman, F., & Dipojono, H. K. (2023a). A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds. Materials Today Communications, 35. https://doi.org/10.1016/j.mtcomm.2023.106402
Akrom, M., Rustad, S., Saputro, A. G., Ramelan, A., Fathurrahman, F., & Dipojono, H. K. (2023b). A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds. Materials Today Communications, 35, 106402. https://doi.org/10.1016/J.MTCOMM.2023.106402
Akrom, M., Sudibyo, U., Kurniawan, A. W., Setiyanto, N. A., Herowati, W., Pertiwi, A., Safitri, A. N., Hidayat, N., Al Azies, H., & Nuswantoro, U. D. (n.d.). Artificial Intelligence Berbasis QSPR Dalam Kajian Inhibitor Korosi. 07(01), 15–20. https://doi.org/10.
Akrom, M., & Sutojo, T. (2023). Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi Pirimidin Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors. Eksergi, 20(1).
Budi, S., Akrom, M., Trisnapradika, G. A., Sutojo, T., & Prabowo, W. A. E. (2023). Optimization of Polynomial Functions on the NuSVR Algorithm Based on Machine Learning: Case Studies on Regression Datasets. Scientific Journal of Informatics, 10(2), 151–158. https://doi.org/10.15294/sji.v10i2.43929
Chauhan, D. S., Singh, P., & Quraishi, M. A. (2020). Quinoxaline derivatives as efficient corrosion inhibitors: Current status, challenges and future perspectives. In Journal of Molecular Liquids (Vol. 320). Elsevier B.V. https://doi.org/10.1016/j.molliq.2020.114387
El Assiri, E. H., Driouch, M., Lazrak, J., Bensouda, Z., Elhaloui, A., Sfaira, M., Saffaj, T., & Taleb, M. (2020). Development and validation of QSPR models for corrosion inhibition of carbon steel by some pyridazine derivatives in acidic medium. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05067
Haikal, F. M., Akrom, M., & Trisnapradika, G. A. (2023). Perbandingan Algoritma Multilinear Regression dan Decision Tree Regressor dalam Memprediksi Efisiensi Penghambatan Korosi Piridazin. Edumatic: Jurnal Pendidikan Informatika, 7(2), 307–315. https://doi.org/10.29408/edumatic.v7i2.22127
Sumarjono, C. A. P., Akrom, M., & Alfa Trisnapradika, G. (2023). Perbandingan Model Machine Learning Terbaik untuk Comparison of the Best Machine Learning Model to Predict Corrosion Inhibition Capability of Benzimidazole Compounds (Vol. 22, Issue 4).
Maidawati, M. (2023). Studi Eksperimen Dan Komputasi Senyawa Organik Sebagai Inhibitor Korosi : A Review. Jurnal Penelitian Dan Pengkajian Ilmiah Eksakta, 2(2), 148–153. https://doi.org/10.47233/jppie.v2i2.1030
Noor, M., Kasmui, , & Kusuma, S. (2016). ANALISIS HUBUNGAN KUANTITATIF STRUKTUR DAN AKTIVITAS ANTIMALARIA SENYAWA TURUNAN QUINOXALIN Info Artikel. Jurnal MIPA, 39(1), 51–56. http://journal.unnes.ac.id/nju/index.php/JM
Quadri, T. W., Olasunkanmi, L. O., Fayemi, O. E., Lgaz, H., Dagdag, O., Sherif, E. S. M., Alrashdi, A. A., Akpan, E. D., Lee, H. S., & Ebenso, E. E. (2022). Computational insights into quinoxaline-based corrosion inhibitors of steel in HCl: Quantum chemical analysis and QSPR-ANN studies. Arabian Journal of Chemistry, 15(7). https://doi.org/10.1016/j.arabjc.2022.103870
Sugeng, M. , M. I. F. , & P. U. J. (2022). ANALISIS PERBEDAAN LAJU KOROSI HASIL PENGUJIAN WEIGHT LOSS DAN POLARISASI PADA PIPA DENGAN PENGUJIAN KOROSI STANDAR ASTM G59 DAN ASTM G31. Tera Journal, 2(1), 48–56. https://jurnal.undira.ac.id/jurnaltera/article/view/14
Sutojo, T., Rustad, S., Akrom, M., Syukur, A., Shidik, G. F., & Dipojono, H. K. (2023). A machine learning approach for corrosion small datasets. Npj Materials Degradation, 7(1). https://doi.org/10.1038/s41529-023-00336-7
Verma, D. K. (2018). Density Functional Theory (DFT) as a Powerful Tool for Designing Corrosion Inhibitors in Aqueous Phase. In Advanced Engineering Testing. InTech. https://doi.org/10.5772/intechopen.78333
DOI: https://doi.org/10.31315/e.v21i2.10025
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.