Pembuatan Bioplastik dari Pati Umbi Ganyong Menggunakan Penguat Seng Oksida dan Plastilizer Gliserol dengan Metode Melt Intercalation
Abstract
Plastik memiliki banyak kelebihan sebagai bahan material suatu produk. Namun, plastik dapat memberikan dampak buruk bagi lingkungan karena sifatnya yang susah terdegradasi. Sifat ini membuat penumpukan sampah plastik semakin tinggi. Oleh karena itu perlu adanya alternatif untuk menangani permasalahan tersebut diantaranya dengan memproduksi bioplastik. Pada penelitian ini, bioplastik diproduksi dari pati ganyong dan gliserol dengan penambahan ZnO melalui proses pencampuran pada kecepatan pengadukan 700 rpm dan pemanasan pada temperatur 80 oC selama 60 menit. Tujuan dari penelitian ini, yaitu untuk mempelajari pembuatan bioplastik menggunakan metode melt intercalation serta mengetahui bagaimana pengaruh penambahan ZnO dan gliserol terhadap kualitas bioplastik. Variabel bebas penelitian ini berupa komposisi gliserol dan ZnO dimana variasi komposisi yang digunakan meliputi 2g ZnO:20%, 30%, 40% gliserol, 3g ZnO:20%, 30%, 40% gliserol, dan 4g ZnO:20%, 30%, 40% gliserol sedangkan massa pati yang digunakan tetap sebanyak 5 gr. Hasil analisa uji kualitas bioplastik menunjukkan perolehan komposisi bahan yang optimal pada sampel penambahan 3g ZnO dan 20% gliserol dimana nilai kuat tarik yang diperoleh sebesar 7,848 MPa, nilai elongasi sebesar 13,285%, nilai swelling sebesar 31,8182%, dan kemampuan degradasi selama 20 hari.
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abe, M.M., et al. (2021). Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers, 13, 2484. [https://doi.org/10.3390/polym13152484].
Ankur, Awadhiya., Vivek, Verma. (2016). A Process for Preparation of Bioplastic. International Application Published Under The Patent Cooperation Treaty, WO2016156930A1.
Awang, M., and Mohd., WRW. (2018). Comparative studies of Titanium Dioxide and Zinc Oxide as a potential filler in Polypropylene reinforced rice husk composite. Conf. Series: Materials Science and Engineering, 342, [doi:10.1088/1757-899X/342/1/012046].
BSN. (2014). Kantong Plastik Mudah Terurai, Jakarta: Standar Nasional Indonesia, 7818:2014.
Bustamante, E.A.S., et al. (2014). In Situ Polymerisation Process for Obtaining an Electro-Optical Apparatus, Said Polymer and Electro-Optical Apparatus and Uses Thereof. United States: Patent Application Publication, US20140002783A1.
Chang, N.X.X., et al. (2021). A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. Journal of Industrial and Engineering Chemistry, [doi: https://doi.org/10.1016/j.jiec.2021.08.033].
DineshKumar, S., Purushothaman, S. (2016). Synthesis and Characterization of Polymer Nanocomposites for Biomedical Applications - Current Perspectives and Challenges. International Journal of Research in Engineering and Science (IJRES), 4(10), 2320-9356.
Dirhanoe, R.F., Heriawati, T.A. (2016). Pembuatan Plastik Biodegradable dari Pati Umbi Ganyong (Canna Edulis) dengan Penambahan Kitosan dan Gliserol. Laporan Penelitian, UPNV Yogyakarta.
Emadian, S.M., et al. (2017). Biodegradation of bioplastics in natural environments. Waste Management, 59, 526-536[http://dx.doi.org/10.1016/j.wasman.2016.10.006].
Estiningtyas HR. (2010). Aplikasi edible film maizena dengan penambahan ekstrak jahe sebagai antioksidan alami pada coating sosis sapi. Skripsi S1 (dipublikasikan), Surakarta: Fakultas Pertanian Universitas Sebelas Maret.
Gabriel, A.A., dkk. (2021). Potentials of Edible Canna (Canna edulis Kerr) Starch for Bioplastic: A Review. Industria: Jurnal Teknologi dan Manajemen Agroindustri, 10(2), 182-191, [https://doi.org/10.org/10.21776/ub.industria.2021.010.02.9].
Ginting, M.H.S., dkk. (2016). The Effect of Chitosan, Sorbitol, and Heating Temperature Bioplastic Solution on Mechanical Properties of Bioplastic from Durian Seed Starch (Durio zibehinus). Int. Journal of Engineering Research and Applications, 6(1), 33-38, 2248-9622.
Guizhen, Zhang., et al. (2017). Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Composites Science and Technology, 145, 157-164.
Ismail, S., et al. (2017). A Study on Thermal Behaviour of Thermoplastic Starch Plasticized by [Emim] Ac and by [Emim] Cl. Procedia Engineering, 184, 567 – 572.
Isroi, dkk. (2018). Biodegradability of Cassava Edible Bioplastic in Landfill and Plantation. Jurnal Kimia dan Kemasan, 40(2), 129-140, [http://dx.doi.org/10.24817/jkk.v40i2.3596].
Jafrey, D.D., K Panneerselvamb. (2017). Manufacturing Issues of Polypropylene Nanocomposite by Melt Intercalation Process. 5th International Conference of Materials Processing and Characterization, 4, 4032–4041.
Jelonek, Katarzyna., et al. (2021). Correlation between the composition of PLA-based folate targeted micelles and release of phosphonate derivative of betulin. Journal of Drug Delivery Science and Technology, 65, 102717.
Johan, Budiman., Rodiana, Nopianti., dan Lestari, SD. (2018). Karakteristik Bioplastik dari Pati Buah Lindur (Bruguiera gymnorrizha). Skripsi, Palembang: Jurusan Teknologi Hasil Perikanan Universitas Sriwijaya.
Lailyningtyas, DI., dkk. (2020). Uji Mekanik Bioplastik Berbahan Pati Umbi Ganyong (Canna edulis) dengan Variasi Selulosa Asetat dan Sorbito. Jurnal Keteknikan Pertanian Tropis dan Biosistem, 8(1), 29-04.
Liircks, Jiirgen. (1998). Properties and applications of compostable starch-based plastic material. BIOTEC. Blinder Weg, 30, 46446, Emmerich, Germany.
Ma'arif, L., Fitrass, U., dan Sedyadi E. (2020). Bioplastic Biodegradation Based on Ganyong Umbi States with Addition of Sorbitol and CMC (Carboxy Methil Cellulose) In Soil Media. PROC. INTERNAT. CONF. SCI. ENGIN, 3, 429-435.
Mohamed, M.A., et al. (2017). Fourier Transform Infrared (FTIR) Spectroscopy. Membrane Characterization, 3-29, [doi:10.1016/b978-0-444-63776-5.00001-2].
Neighbors, Gael. (2019). Which Type of Starch Makes a Stronger Bioplastic?. California Sience & Engineering Fair Project Summary, J1316.
Poth, U. (2019). Solution polymerization products. Acrylic Resins, 47-128, [doi:10.1515/9783748602170-004].
Puffr, Rudolf., et al. (2013). Clay mineral/polyamide nanocomposites obtained by in-situ polymerization or melt intercalation. Applied Clay Science, 6, 0169-1317, [http://dx.doi.org/10.1016/j.clay.2013.08.029].
Qingchuan, Guo., et al. (2014). Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites. Journal Polymers, 6, 2037-2050, [Doi: 10.3390/polym6072037].
Rahman, MM. (2020). Polyurethane/Zinc Oxide (PU/ZnO) Composite—Synthesis, Protective Property and Application. Polymers, 12, 1535, [doi:10.3390/polym12071535].
Ribadiya, P., et al. (2021). Bioplastic: Production of Bioplastic from Banana Peels. International Journal of Biology Pharmacy and Allied Sciences (IJHPAS), 10(4), 143-151.
Sandra, Viamonte-Aristizabal., et al. (2021). Synthesis of high molecular weight L-Polylactic acid (PLA) by reactive extrusion at a pilot plant scale: Influence of 1,12-dodecanediol and di(trimethylol propane) as initiators. European Polymer Journal, 161, 110818.
Saputro, A.N.C., Ovita, A.L. (2017). Synthesis and Characterization of Bioplastic from Chitosan-Ganyong Starch (Canna edulis). JKPK (JURNAL KIMIA DAN PENDIDIKAN KIMIA), 2(1), 13-21.
Sedyadi, E., dan Yuliati, RT. (2020). Preparation of Ganyong (Canna discolour) Starch Bioplastic with the Addition Of Sirih (Piper betle) Leaf Extract. Journal of Physics: Conference Series, 1594, [doi:10.1088/1742-6596/1594/1/012050].
Seyeon, H. (2015). Study of Materials and Machines for 3D Printed Large-Scale Flexible Electronic Structures Using Fused Deposition Modeling. Doctoral Program in Materials Science and Engineering Thesis, Texas: THE UNIVERSITY OF TEXAS AT EL PASO.
Shamsuddin, I.M., et al. (2017). Bioplastics as Better Alternative to Petroplastics and Their Role in National Sustainability: A Review. Advances in Bioscience and Bioengineering, 5(4), 63-70. [doi: 10.11648/j.abb.20170504.13].
Sharma, Suraj., et al. (2013). Macrophyte-Based Bioplastic. Patent Application Publication, United States, US20130220173A1.
Solomonides, E.G. (2016). Biodegradable Bioplastic Compositions and Methods of Making and Using The Same. WO2016134094A1.
Suryanegara, L. et al. (2021). Novel antimicrobial bioplastic based on PLA-chitosan by addition of TiO2 and ZnO. Journal of Environmental Health Science and Engineering, 19(1), 415-425, [doi:10.1007/s40201-021-00614-z].
Svedin, J. (2020). Photodegradation of Macroplastics to Microplastics: A laboratory study on common litter found in urban areas. Natural Resource Engineering, 30, Luleå University of Technology.
Theng, B.K.G. (2012). Polymer–Clay Nanocomposites. Developments in Clay Science, 4, 201–241, [doi:10.1016/b978-0-444-53354-8.00007-4].
Vieira, M.G.A., et al. (2011). Natural-based plasticizers and biopolymer films: A review. School of Chemical Engineering, 500, 13083-852, Brazil: University of Campinas, UNICAMP.
Watcharatewinkul, Y., et al. (2009). Pasting properties of a heat-moisture treated canna starch in relation to its structural characteristics. Carbohydrate Polymers, 75, 505-511, [doi:10.1016/j.carbpol.2008.08.018].
Widiyandari, H., Umiati, NAK., Herdianti, RD. (2018). Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method. Journal of Physics, 1025, [doi :10.1088/1742-6596/1025/1/012004].
Xiao, Huaxi., et al. (2020). The study on starch granules by using darkfield and polarized light microscopy. Journal of Food Composition and Analysis, 92, 103576.
Yamamoto, K., Buckow, R. (2016). Pressure Gelatinization of Starch. Food Engineering Series, 433–459, [DOI 10.1007/978-1-4939-3234-4_20].
Yaradoddi, J., et al. (2016). Biodegradable Plastic Production from Fruit Waste Material and Its Sustainable Use for Green Applications. International Journal of Pharmaceutical Research & Allied Sciences, 5(4), 56-66, 2277-3657.
Yuniarti LI., Hutomo GS., dan Rahim A. (2014). Sintesis dan Karakterisasi Bioplastik Berbasis Pati Sagu (Metroxylon Sp). e-J Agrotekbis, 2(1), 38-46.
Zhang, J., et al. (2010). Physicochemical Properties of Canna edulis Ker Starch on Heat-Moisture Treatment. International Journal of Food Properties, 13(6), 1266-1279, [doi:10.1080/10942910903061828].
Zhiqi, S., et al. (2002). Comparison of Solution Intercalation and Melt Intercalation of Polymer-Clay Nanocomposites. Polymer, 43, 4251-4260.
DOI: https://doi.org/10.31315/e.v21i2.12025
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.