Pretreatment Spirulina platensis Residue untuk Produksi Bioetanol

Heni Anggorowati, Indriana Lestari, Arief Budiman, Yano Surya Pradana

Abstract


Pemerintah Indonesia berusaha untuk menggurangi penggunaan bahan bakar fosil dengan mendorong adanya transisi ke sumber energi terbarukan. Bioetanol merupakan salah satu alternatif energi terbarukan yang mampu mengurangi penggunaan bensin di sektor transportasi. Bioetanol dapat diproduksi dari spirulina platensis residu (SPR) yang masih mengandung karbohidrat yang tinggi. Untuk memaksimalkan perolehan bioethanol diperlukan proses pretreatment yang sesuai untuk memecah dinding sel SPR sehingga diperoleh glukosa yang siap difermentasi. Pada penelitian ini dilakukan tiga metode pretreatment yaitu ultrasonikasi, autoclave dan enzimatis. Pretreatment dengan ultrasonikasi dilakukan dengan ultasonicator batch 40 kHz selama 30 menit dan menghasilkan glukosa sebesar 147,1154 mg/L. Sedangkan dengan autoclave pada suhu 121 oC selama 30 menit menghasilkan glukosa sebesar 21.15385 mg/L. Pretreatmen enzimatis dilakukan dengan menggunakan kombinasi enzim α-amylase dan amyloglucosidase (1:0; 0,75: 0,25; 0,5:0,5; 0,25:0,75 dan 0:1) pada suhu 40 oC selama 180 menit. Yield glukosa maksimum diperoleh pada pengguanaan enzim α-amylase: amyloglucosidase = 0,25:0,75 yaitu sebesar 33,15%.

Keywords


spirulina platensis residue, ultasonikasi, autoclave, α-amylase, amyloglucosidase

References


Abdallah, Q., Nixon, B.T., and Fortwendel, J.R., 2016. The enzymatic conversion of major algal and cyanobacterial carbohydrates to bioethanol. Frontiers in Energy Research. Vol 4. No 36. 1-15

Choi, S.P., Nguyen, M.T., Sim, S.J., 2010. Enzymatic pretreatment of chlamydomonas reinhardtii biomass for ethanol production. Bioresource Technology. Vol 101. No 14. 5330-5336.

Debiagi, F., Madeira, T.B., Nixdorf, S.L., and Mali., S., 2020. Pretreatment efficiency using autoclave high pressure steam and ultrasonication in sugar production from liquid hydrolysates and acess to the residual solid fractions of wheat bran and oat hulls. Applied Biochemistry and Biotechnology. Vol 190. 166-181.

Demuez, M., Mahdy, A., Tomas-Pejo, E., Gonzalez-Fernandez, C., Ballesteros, M., 2015. Enzymatic cell disruption of microalgae biomass in biorefinery process. Biotechnol Bioeng. Vol 112. No 10. 1955-1966

Eldalatony, M.M., Kabra., A.N., Hwang, J.H., Govindwar, S.P., Kim, K.H., Kim, H., Jeon, B.H., 2015. Pretreatment of microalgal biomass for enchanced recovery/extraction of reducing sugar and proteins. Bioprocess Biosyst Eng. Vol 39. 95-103.

Ferreira, A.F., Dias, A.P.S., Silva, C.M., dan Costa, M., 2016. Effect of low frequency ultrasound on microalgae solvent extraction : analysis of product, energy consumption and emissions. Alga Research. Vol 14. 9-16.

Halim, R., Harun, R., Danquah, M.K., Webley, P.A., 2012. Microalgal cell disruption for biofuel development. Applied Energy. Vol 19. 116-121.

Hammann, W.R., 2019. Method development and optimization for the recovery of carbohidrates from a microalga species of chlorella vulgaris by combined physical and chemical pertreatments. Thesis. University of North Dakota

Hargono, H., Kumoro, A.C., Jos, B., 2018. Studi kinetika hidrolisis enzimatik pati singkong: pengaruh perbandingan alfa-amilase dan glukoamilase terhadap gula reduksi. Prosiding Seminar Nasional Teknik Kimia “Kejuangan”. F1. 1-7.

Jamilatun, S., Budhijanto, B., Rochmadi, R., Budiman, A., 2017. Thermal decomposition and kinetics studies of pyrolysis of spirulina platensis residue. Int Journal of Renewable Energy Development (IJRED). Vol 6. No 3. 193-201.

Jamilatun, S., Budiman, A., Anggorowati, H., Yuliestyan, A., Pradana, Y.S., Budhijanto, B., Rochmadi, R., 2019. Ex-situ catalytic upgrading of spirulina platensis residue oil using silica alumina catalyst. International Journal of Renewable Energy Research (IJRER). Vol 9. No 4. 1733-1740

Jeon, B.H., Choi, J.A., Kim, H.C., Hwang, J.H., Al Abou-Shanab, R., Dempsey, B.A., Regan, J.M., and Kim, J.R., 2013. Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnology for Biofuels. Vol 6. No 37. 1-9.

Lee, S., and Shah, Y.T., 2012. Biofuel and bioenergy : processes and technologies. CRC Press. London. England.

Liang, K., Zhang, Q., Cong, W., 2012. Enzyme assisted aqueous extraction of lipid from microalgae. Journal of Agriculture and food Chemistry. Vol 60. No 47. 11771-11776.

Luque-Garcia, J.L., and Luque de Castro, M.D., 2003. Ultrasound : a powerfull tool for leaching. Trend in Analitical Chem. Vol 22. 41-47.

Magro, F.G., Margarites, A.C., Reinehr, C.O., Gonçalves, G.C., Grazieli Rodigheri, G., Costa, J.A.V., Colla, L.M., 2017. Spirulina platensis biomass composition is influenced by the light availability and harvest phase in raceway ponds. Environ. Technol. Vol 22, 1–10.

Michelon, W., Pirolli, M., Mezzari, M.P., Soares, H.M., and Busi da Silva, M.L., 2019. Residual sugar from microalgae biomass harvested from phycoremediation of swine wastewater digestate. Water Science & Technology. Vol 79. No 11. 2203-2210

Miranda, J.R., Passarinho, P.c., and Gouveia, L., 2012. Pre-treatment optimization of scenedesmus obliquus microalga for bioethanol production. Bioresource Technology. Vol 104. 342-348.

Permanasari, A.R., Yulistiani, F., Purnama, R.W., Widjaja, T., and Gunawan, S., 2018. IOP Conference Series : Eart and Enviromental Science. 160. 1-6.

Rempel, A., Machado, T., Treichel, H., Colla, E., Margarites, A.C., and Colla, L.M., 2018. Saccharification of spirulina platensis biomass using free and immobilized amylolytic enzymes. Bioresource Technology. Vol 263. 163-171

Rempel, A., Sossella, F., Margarites, A., Astolfi, A., Steinmetz, R., Kunz, A., Treichel, H., Colla, L., 2019. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: An energy efficient approach. Bioresource Technology. Vol 288. 121588. 10.1016/j.biortech.2019.121588.

Robak, K., and Balcerek, M., 2018. Review of second generation bioethanol production from residual biomass. Food Technology & Biotechnology. Vol 56. No 2. 174-187

Rodrigues, C.S., Villela, H.D.M., Martins, A.P., Marques, L.G., Colepicolo, P., and Tonon, A.P., 2015. Mocroalgae for economic applications : advantages and perspectives for bioethanol. Journal of Experimental Botany. Vol 66 No 14. 4097-4108.

Shokrkar, H., Ebrahimi, S., Zamani, M., 2017. Bioethanol production from acidic and enzymatic hydrolysates of mixed microalgae culture. Fuel. Vol 200. 380-386.

Shokrkar, H., and Ebrahimi, S., 2018. Synergism of cellulase and amylolitic enzymes in the hydrolysis of microalgal carbohydrates. Biofuel, Bioproduct & Biorefining. Vol 12. No 5. 749-755.

Sugiyono, A., Anindhita., Fitriana, I., Wahid, L.M.A., Adiarso., 2019. Dampak peningkatan pemanfaatan energi baru terbarukan terhadap perekonomian nasional. BPPT. pp 2

Van Zyl, W.H., Bloom, M., and Viktor, M.J., 2012. Engineering yeasts for raw starch conversion. Appl Microbial Biotechnology. Vol 95. 1377-1388.

Velazquez-Lucio, J., Rodriguez-Jasso, R.M., Colla, L.M., Saenz-Galindo, A., Cervantes-Cisneros, D.E., Aguilar, C.N., Fernandes, B.D., and Ruiz, H.A., 2018. Microalgal biomass pretreatment for bioethanol production: a review. Biofuel Research Journal. Vol 17. 780-791

Wang, L., and Waller, C.L., 2006. Recent advances in extraction of nutraceuticals from plants. Trends Food Science Technology. Vol 17. 300-312.




DOI: https://doi.org/10.31315/e.v0i0.4551

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".

Contact  Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

 

 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami