Supporting Second Generation Biofuel Development: Thermophilic Anaerobic Digestion of Vinasse for Harmonizing with Molasses Based Bioethanol Plant Capacity
Abstract
Keywords
Full Text:
PDFReferences
APHA. (2017a). 5220 D CHEMICAL OXYGEN DEMAND, 5560 C ORGANIC AND VOLATILE ACIDS. In Standard Methods for The Examination of Water and Wastewater (p. S-18).
APHA. (2017b). 5560 C ORGANIC AND VOLATILE ACIDS. In Standard Methods for The Examination of Water and Wastewater.
Badan Pusat Statistik. (2021). Luas Tanaman Perkebunan Menurut Provinsi.
Bergmann, J. C., Trichez, D., Sallet, L. P., de Paula e Silva, F. C., & Almeida, J. R. M. (2018). Technological Advancements in 1G Ethanol Production and Recovery of By-Products Based on the Biorefinery Concept. Advances in Sugarcane Biorefinery: Technologies, Commercialization, Policy Issues and Paradigm Shift for Bioethanol and By-Products, 73–95. https://doi.org/10.1016/B978-0-12-804534-3.00004-5
Boly, M., & Sanou, A. (2022). Biofuels and food security: evidence from Indonesia and Mexico. Energy Policy, 163. https://doi.org/10.1016/j.enpol.2022.112834
Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management, 49(8), 2106–2116. https://doi.org/10.1016/j.enconman.2008.02.020
Deublein, D. and A. S. (2011). Biogas from Waste and Renewable Resources (Second). Wiley-VCH.
Dhamodharan, K., Kumar, V., & Kalamdhad, A. S. (2015). Effect of different livestock dungs as inoculum on food waste anaerobic digestion and its kinetics. Bioresource Technology, 180, 237–241. https://doi.org/10.1016/j.biortech.2014.12.066
Dinsdale, R. M., Hawkes, F. R., Hawkes, D. L. (1996). The Mesophilic and Thermophilic Anaerobic Digestion of Coffee Waste Containing Coffee Grounds. Water Resource, 30(2), 371–377.
Hoarau, J., Caro, Y., Grondin, I., & Petit, T. (2018). Sugarcane vinasse processing: Toward a status shift from waste to valuable resource. A review. Journal of Water Process Engineering, 24(May), 11–25. https://doi.org/10.1016/j.jwpe.2018.05.003
Puspitasari, D. A. T. T. F. Z. N. (2021). Distribusi Perdagangan Komoditas Gula Pasir Indonesia 2021.
Rahmadi, A., Aye, L., & Moore, G. (2013). The feasibility and implications for conventional liquid fossil fuel of the Indonesian biofuel target in 2025. Energy Policy, 61, 12–21. https://doi.org/10.1016/j.enpol.2013.06.103
Schmidt, J. E. E., & Ahring, B. K. (1994). Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors. Applied Microbiology and Biotechnology, 42(2–3), 457–462. https://doi.org/10.1007/BF00902757
Shi, X., Guo, X., Zuo, J., Wang, Y., & Zhang, M. (2018). A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts. Waste Management, 75, 261–269. https://doi.org/10.1016/j.wasman.2018.02.004
Speece, R. E. (2008). Anaerobic Biotechnology and Odor/Corrosion Control for Municipalities and Industries. Archae Press.
Tatara, M., Makiuchi, T., Ueno, Y., Goto, M., & Sode, K. (2008). Methanogenesis from acetate and propionate by thermophilic down-flow anaerobic packed-bed reactor. Bioresource Technology, 99(11), 4786–4795. https://doi.org/10.1016/j.biortech.2007.09.069
Tatara, M., Yamazawa, A., Ueno, Y., Fukui, H., Goto, M., & Sode, K. (2005). High-rate thermophilic methane fermentation on short-chain fatty acids in a down-flow anaerobic packed-bed reactor. Bioprocess and Biosystems Engineering, 27(2), 105–113. https://doi.org/10.1007/s00449-004-0387-8
Ueno, Y., & Tatara, M. (2008). Microbial population in a thermophilic packed-bed reactor for methanogenesis from volatile fatty acids. Enzyme and Microbial Technology, 43(3), 302–308. https://doi.org/10.1016/j.enzmictec.2008.04.007
Vasudevan, P., Sharma, S., & Kumar, A. (2005). Liquid fuel from biomass: An overview Organic agriculture and waste management View project Liquid fuel from biomass: An overview. In Article in Journal of Scientific and Industrial Research (Vol. 64). https://www.researchgate.net/publication/228617933
Wardani, N A, Afiqah, N, Azis, M M, Budhijanto, W. (2020). Comparison of Biogas Productivity in Thermophilic and Mesophilic Anaerobic Digestion of Bioethanol Liquid Waste Comparison of Biogas Productivity in Thermophilic and Mesophilic Anaerobic Digestion of Bioethanol Liquid Waste. Earth and Environmental Science. https://doi.org/10.1088/1755-1315/448/1/012002
Zhang, R., El-Mashad, H. M., Hartman, K., Wang, F., Liu, G., Choate, C., & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935. https://doi.org/10.1016/j.biortech.2006.02.039
DOI: https://doi.org/10.31315/e.v20i1.9076
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.