Produksi Asam Laktat Melalui Jalur Biologi dan Jalur Kimia Katalitik Menggunakan Berbagai Bahan Baku

Apsari Puspita Aini, Enny Nurmalasari, Carolus Borromeus Rasrendra, Johnner Sitompul

Abstract


Aplikasi asam laktat pada berbagai industri menarik minat para peneliti untuk memproduksi asam laktat melalui berbagai jalur reaksi. Perolehan isomer asam lakat yang lebih murni dibandingkan dengan jalur reaksi kimia katalitik menjadikan jalur biologi dengan fermentasi menjadi jalur reaksi yang banyak dipakai di industri. Berbagai mikroorganisme pada golongan Lactic Acid Bacteria telah digunakan untuk memproduksi asam laktat baik dalam skala laboratorium maupun skala industri. Berbagai bahan baku dapat dikonversi menjadi asam laktat seperti, dihidroksi aseton, gliseraldehid, piruvaldehid, xilosa, glukosa, fruktosa, sukrosa, selulosa, insulin, selobiosa, pati, levoglukosan dan lignoselulosa. Kemampuan katalis dalam metode kimiawi menarik banyak minat peneliti untuk mencari alternatif pembuatan asam laktat yang bisa mengkonversi gula menjadi asam laktat dengan waktu reaksi yang lebih singkat. Penggunaan berbagai katalis mulai dari katalis homogen dan heterogen terbukti dapat menghasilkan asam laktat dengan yield yang bervariasi. Katalis lanthanum triflate terlihat menghasilkan asam laktat dengan perolehan yang baik walaupun dari bahan baku lignoselulosa yang perlu perlakuan awal terlebih dahulu karena mempunyai senyawa lignin yang bisa menghalangi kerja katalis.

Kata Kunci: asam laktat; kimia katalitik; fermentasi; lignoselulosa

 

 

ABSTRACT: The utilization of lactic acid for various applications encourages researchers to produce lactic acid by various reaction pathways. The yield of lactic acid isomer which is purer than the catalytic chemical reaction makes the biological pathway by fermentation widely used in industry. Various microorganisms in the Lactic Acid Bacteria categories have been used to produce lactic acid both on a laboratory and industrial scale. Various raw materials can be converted into lactic acid such as dihydroxy acetone, glyceraldehyde, pyruvaldehyde, xylose, glucose, fructose, sucrose, cellulose, insulin, cellobiose, starch, levoglucosan and lignocellulose. The ability of catalyst has attracted interest of researcher to find alternatives for making lactic acid that can convert sugar into lactic acid with a shorter reaction time. The use of various catalysts from homogeneous and heterogeneous catalysts has been proven to produce lactic acid with varying results. The lanthanum triflate catalyst proven to produce lactic acid with a high yield, even though it is from lignocellulosic raw materials that need pre-treatment to remove lignin compounds which can inhibit the performance of the catalyst.

Keywords: lactic acid; chemical catalytic; fermentation;  lignocellulose

 

 


Keywords


asam laktat; kimia katalitik; fermentasi; lignoselulosa

References


Abdel-Rahman, M. A., Hassan, S. E. D., Azab, M. S., Mahin, A. al, & Gaber, M. A. 2019. High improvement in lactic acid productivity by new alkaliphilic bacterium using repeated batch fermentation integrated with increased substrate concentration. BioMed Research International, 2019.

Aini, Apsari Puspita, Hyung Woo Lee, Johnner Parningotan Sitompul, and Carolus Borromeus Rasrendra. 2018. “Production of Lactic Acid from Empty Fruit Bunch of Palm Oil Using Catalyst of Barium Hydroxide.” In MATEC Web of Conferences, EDP Sciences.

Alrumman, Sulaiman A. 2016. “Enzymatic Saccharification and Fermentation of Cellulosic Date Palm Wastes to Glucose and Lactic Acid.” Brazilian Journal of Microbiology 47(1): 110–19.

Alsaheb, Ramzi A Abd et al. 2015. “Lactic Acid Applications in Pharmaceutical and Cosmeceutical Industries.” Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research 7(10): 729–35. www.jocpr.com.

Bicker, M., S. Endres, L. Ott, and H. Vogel. 2005. “Catalytical Conversion of Carbohydrates in Subcritical Water: A New Chemical Process for Lactic Acid Production.” Journal of Molecular Catalysis A: Chemical 239(1–2): 151–57.

Chambon, Flora et al. 2011. “Cellulose Hydrothermal Conversion Promoted by Heterogeneous Brønsted and Lewis Acids: Remarkable Efficiency of Solid Lewis Acids to Produce Lactic Acid.” Applied Catalysis B: Environmental 105(1–2): 171–81.

Chen, Hao et al. 2020. “Efficient Lactic Acid Production from Cassava Bagasse by Mixed Culture of Bacillus Coagulans and Lactobacillus Rhamnosus Using Stepwise PH Controlled Simultaneous Saccharification and Co-Fermentation.” Industrial Crops and Products 146.

Chin, Siew Xian et al. 2016. “Catalytic Conversion of Empty Fruit Bunch (EFB) Fibres into Lactic Acid by Lead (II) Ions.” BioResources 11(1): 2186–2201.

Datta, Rathin, and Michael Henry. 2006. “Lactic Acid: Recent Advances in Products, Processes and Technologies - A Review.” Journal of Chemical Technology and Biotechnology 81(7): 1119–29.

Djukić-Vuković, Aleksandra et al. 2016. “Wastes from Bioethanol and Beer Productions as Substrates for l(+) Lactic Acid Production - A Comparative Study.” Waste Management 48: 478–82.

Esposito, Davide, and Markus Antonietti. 2013. “Chemical Conversion of Sugars to Lactic Acid by Alkaline Hydrothermal Processes.” ChemSusChem 6(6): 989–92.

Gómez-Gómez, Javier Antonio, Catalina Giraldo-Estrada, David Habeych, and Sandra Baena. 2015. “Evaluation of Biological Production of Lactic Acid in a Synthetic Medium and in Aloe Vera (L.) Burm. f. Processing by-Products.” Universitas Scientiarum 20(3): 369–85.

Grand View Research. 2021. “Lactic Acid Market.”

Hayashi, Yukiko, and Yoshiyuki Sasaki. 2005. “Tin-Catalyzed Conversion of Trioses to Alkyl Lactates in Alcohol Solution.” Chemical Communications (21): 2716–18.

Hoheneder, R. et al. 2021. “Efficient Conversion of Hemicellulose Sugars from Spent Sulfite Liquor into Optically Pure L-Lactic Acid by Enterococcus Mundtii.” Bioresource Technology 333.

Holm, Martin Spangsberg, Shunmugavel Saravanamurugan, and Esben Taarning. 2010. “Conversion of Sugars to Lactic Acid Derivatives Using Heterogeneous Zeotype Catalysts.” Science 328(5978): 602–5.

Kim, Kwang Ho, Chang Soo Kim, Yunxuan Wang, and Chang Geun Yoo. 2020. “Integrated Process for the Production of Lactic Acid from Lignocellulosic Biomass: From Biomass Fractionation and Characterization to Chemocatalytic Conversion with Lanthanum(III) Triflate.” Industrial and Engineering Chemistry Research 59(23): 10832–39.

Krull, Susan, Silvia Brock, Ulf Prüße, and Anja Kuenz. 2020. “Hydrolyzed Agricultural Residues—Low-Cost Nutrient Sources for l-Lactic Acid Production.” Fermentation 6(4).

Kuo, Yang Cheng et al. 2015. “Production of Optically Pure L-Lactic Acid from Lignocellulosic Hydrolysate by Using a Newly Isolated and d-Lactate Dehydrogenase Gene-Deficient Lactobacillus Paracasei Strain.” Bioresource Technology 198: 651–57.

Li, Li et al. 2011. “Selective Conversion of Trioses to Lactates over Lewis Acid Heterogeneous Catalysts.” Green Chemistry 13(5): 1175–81.

Liu, Dajiang et al. 2018. “Cascade Production of Lactic Acid from Universal Types of Sugars Catalyzed by Lanthanum Triflate.” ChemSusChem 11(3): 598–604.

Lunelli, Betânia H. et al. 2010. “Production of Lactic Acid from Sucrose: Strain Selection, Fermentation, and Kinetic Modeling.” Applied Biochemistry and Biotechnology 161(1–8): 227–37.

Nandini, Atika, Dilirani Nagarajan, and Jo-Shu Chang. 2020. “Production of Lactic Acid from Microalgal Biomass Chlorella Vulgar ESP-31 as a Feedstock Using PVA Immobilized Bacteria L. Plantarum 23.” In 1st International Conference Eco-Innovation in Science, Engineering, and Technology. NST Proceedings, Galaxy Science, 165–69.

Novy, Vera, Bernd Brunner, and Bernd Nidetzky. 2018. “L-Lactic Acid Production from Glucose and Xylose with Engineered Strains of Saccharomyces Cerevisiae: Aeration and Carbon Source Influence Yields and Productivities.” Microbial Cell Factories 17(1).

de Oliveira Moraes, Anelize, Ninoska Isabel Bojorge Ramirez, and Nei Pereira. 2016. “Evaluation of the Fermentation Potential of Pulp Mill Residue to Produce d(−)-Lactic Acid by Separate Hydrolysis and Fermentation Using Lactobacillus Coryniformis Subsp. Torquens.” Applied Biochemistry and Biotechnology 180(8): 1574–85.

Onda, Ayumu. 2014. “Production of Lactic Acid from Sugars by Homogeneous and Heterogeneous Catalysts.” In , 83–107.

Onda, Ayumu, Takafumi Ochi, Koji Kajiyoshi, and Kazumichi Yanagisawa. 2008. “A New Chemical Process for Catalytic Conversion of D-Glucose into Lactic Acid and Gluconic Acid.” Applied Catalysis A: General 343(1–2): 49–54.

Ponchai, Panyapat et al. 2020. “Engineering Zirconium-Based UiO-66 for Effective Chemical Conversion of d-Xylose to Lactic Acid in Aqueous Condition.” Chemical Communications 56(58): 8019–22.

Rasrendra, C. B., I. G.B.N. Makertihartha, S. Adisasmito, and H. J. Heeres. 2010. “Green Chemicals from D-Glucose: Systematic Studies on Catalytic Effects of Inorganic Salts on the Chemo-Selectivity and Yield in Aqueous Solutions.” In Topics in Catalysis, , 1241–47.

Rasrendra, Carolus B. et al. 2011. “Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water.” ChemSusChem 4(6): 768–77.

Samsudin, Hayati, and Fabiola Iniguez-Franco. 2022. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, Applications, and End of Life, @nd Edition. 2nd ed. eds. Rafael A. Auras, Loong-Tak Lim, Susan E.M. Selke, and Hideto Tsuji. USA: Wiley.

Sitompul, J.P. et al. 2014. “Catalytic Conversion of Empty Fruit Bunch of Palm Oil for Producing Lactic Acid.” Procedia Chemistry 9: 88–93.

Taarning, Esben et al. 2009. “Zeolite-Catalyzed Isomerization of Triose Sugars.” ChemSusChem 2(7): 625–27.

Tang, Zhenchen et al. 2014. “Transformation of Cellulose and Its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations.” ChemSusChem 7(6): 1557–67.

Tsapekos, Panagiotis et al. 2020. “Fermentative Production of Lactic Acid as a Sustainable Approach to Valorize Household Bio-Waste.” Frontiers in Sustainability 1.

Utrilla, José et al. 2016. “Production of D-Lactate from Sugarcane Bagasse and Corn Stover Hydrolysates Using Metabolic Engineered Escherichia Coli Strains.” Bioresource Technology 220: 208–14.

Wang, Fen Fen et al. 2015. “Conversion of Cellulose to Lactic Acid Catalyzed by Erbium-Exchanged Montmorillonite K10.” Green Chemistry 17(4): 2455–63.

Wang, Yanliang et al. 2013. “Chemical Synthesis of Lactic Acid from Cellulose Catalysed by Lead(II) Ions in Water.” Nature Communications 4.

Wischral, Daiana et al. 2019. “Lactic Acid Production from Sugarcane Bagasse Hydrolysates by Lactobacillus Pentosus: Integrating Xylose and Glucose Fermentation.” Biotechnology Progress 35(1).

Yan, Xiuyi et al. 2010. “Hydrothermal Conversion of Carbohydrate Biomass to Lactic Acid.” AIChE Journal 56(10): 2727–33.

Yang, Lisha et al. 2015. “Catalytic Conversion of Hemicellulosic Biomass to Lactic Acid in PH Neutral Aqueous Phase Media.” Applied Catalysis B: Environmental 162: 149–57.

Yankov, Dragomir. 2022. “Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product.” Frontiers in Chemistry 10.

Zhang, Shiping, Fangming Jin, Jiajun Hu, and Zhibao Huo. 2011. “Improvement of Lactic Acid Production from Cellulose with the Addition of Zn/Ni/C under Alkaline Hydrothermal Conditions.” Bioresource Technology 102(2): 1998–2003.




DOI: https://doi.org/10.31315/e.v20i3.9768

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".

Contact  Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

 

 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor