Penyisihan Ion Logam Cr(VI) dari Larutan Menggunakan Biosorben Berbasis Limbah Pertanian Bagase Sorgum Teraktivasi NaOH

Devi Indrasari Mustopa Putri, Handoko Darmokoesomo, Ganden Supriyanto, Navillah Zahro Female, Bernadeta Ayu Widyaningrum

Abstract


Kontaminasi logam kromium sangat berbahaya bagi lingkungan perairan yang terjadi melalui aktivitas industri. Saat ini penyisihan logam kromium dalam perairan banyak dipelajari untuk mengurangi tingkat toksisitasnya. Pada penelitian ini, limbah pertanian bagase sorgum yang diaktivasi dengan NaOH digunakan untuk mengadsorpsi ion logam Cr(VI) dalam larutan. Bagase sorgum teraktivasi NaOH dikarakterisasi menggunakan uji pHpzc, FT-IR, SEM-EDX, XRD, dan metode BET untuk menganalisis gugus fungsi, morfologi permukaan, luas permukaan, serta ukuran pori pada material. Menggunakan sistem batch, parameter adsorpsi seperti massa adsorben, waktu kontak, konsentrasi awal ion logam, pH, dan suhu larutan diamati. Adsorpsi Cr(VI) memiliki kondisi optimum pada pH 2, waktu kontak 70 menit, massa adsorben 900 mg, konsentrasi awal larutan 10 mg/L, dan suhu larutan 30 °C. Persentase kapasitas adsorpsi maksimum yang diperoleh adalah 99,03%. Model orde dua semu cocok untuk mengidentifikasi kinetika adsorpsi ion Cr(VI). Model isoterm adsorpsi ion Cr(VI) sesuai dengan model Freundlich. Energi bebas Gibbs diperoleh nilai positif dan entalpi memiliki nilai negatif, hal ini menunjukkan bahwa adsorpsi ion Cr(VI) merupakan proses eksotermik. Oleh karena itu, upaya pengurangan kadar ion logam Cr(VI) di lingkungan perairan menggunakan adsorben bagase sorgum teraktivasi NaOH dapat dijadikan sebagai alternatif baru dengan perlakuan yang mudah dan bersifat ekonomis.


Keywords


adsorpsi; bagase sorgum teraktivasi; Cr(VI); limbah pertanian

References


Adebayo, G.B., Adegoke, H.I., & Fauzeeyat, S. (2020). Adsorption of Cr(VI) ions onto goethite, activated carbon and their composite: kinetic and thermodynamic studies. Applied Water Science, 10(9), 213.

Ajitha, P., Vijayalakshmi, K., Saranya, M., Gomathi, T., Rani, K., Sudha, P. ., & Sukumaran, A. (2017). Removal of toxic heavy metal lead (II) using chitosan oligosaccharide-graft-maleic anhydride/polyvinyl alcohol/silk fibroin composite. International Journal of Biological Macromolecules, 104, 1469–1482.

Ashraf, A., Bibi, I., Niazi, N.K., Ok, Y.S., Murtaza, G., Shahid, M., Kunhikrishnan, A., Li, D., & Mahmood, T. (2017). Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions. International Journal of Phytoremediation, 19(7), 605–613.

Badessa, T.S., Wakuma, E., & Yimer, A.M. (2020). Bio-sorption for effective removal of chromium(VI) from wastewater using Moringa stenopetala seed powder (MSSP) and banana peel powder (BPP). BMC Chemistry, 14(1), 71.

Bernal, V., Erto, A., Giraldo, L., & Moreno-Piraján, J.C. (2017). Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons. Molecules (Basel, Switzerland), 22(7).

Cherono, F., Mburu, N., & Kakoi, B. (2021). Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon, 7(11), e08254.

Das, D., Samal, D., & BC, M. (2015). Preparation of Activated Carbon from Green Coconut Shell and its Characterization. Journal of Chemical Engineering & Process Technology, 06.

Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q., & Yan, Z. (2017). Competitive adsorption of Pb(II), Cd(II) and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science, 506, 355–364.

Gorzin, F., & Abadi, M.M.B.R. (2017). Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsorption Science & Technology, 36(1–2), 149–169.

Gupta, M., Gupta, H., & Kharat, D.S. (2018). Adsorption of Cu(II) by low cost adsorbents and the cost analysis. Environmental Technology & Innovation, 10, 91–101.

Hanumantu, J.R. (2021). Characterization Studies on Adsorption of Lead and Cadmium Using Activated Carbon Prepared from Waste Tyres. Nature Environment and Pollution Technology, 20(2), 561–568.

Hauwa , H., Whong , C.M.Z., Ado, S.A., & Abdulmumin, A.N. (2020). Optimization of Culture Condition for Biosorption of Lead using Pseudomonas aeruginosa isolated from Gold Mining Site of Anka, Zamfara State. UMYU Journal of Microbiology Research (UJMR), 5(1 SE-Articles), 43–48.

Islam, M.M., Mohana, A.A., Rahman, M.A., Rahman, M., Naidu, R., & Rahman, M.M. (2023). A Comprehensive Review of the Current Progress of Chromium Removal Methods from Aqueous Solution. In Toxics (Vol. 11, Issue 3).

Jalil, R., Mohd-Sahaid, K., Abd.Rahman, N., Aidil, A.H., & Farid, A. (2020). EFFECT OF SODIUM HYDROXIDE PRETREATMENT ON CHEMICAL COMPOSITION OF TREATED ACACIA MANGIUM USING RESPONSE SURFACE METHODOLOGY. JOURNAL OF TROPICAL FOREST SCIENCE, 32, 391–401.

Kamal, M., Hadi, M.S., Hariyanto, E., Jumarko, & Ashadi. (2014). Grain yield and, nutrient and starch content of Sorghum (Sorghum bicolor (L.) Moench) genotypes as affected by date of intercropping with Cassava in Lampung, Indonesia. Journal of the International Society for Southeast Asian Agricultural Sciences, 20, 64–76.

Komari, N., Utami, U., & Malinda, N. (2012). Adsorpsi Pb2+ dan Zn2+ pada Biomassa Imperata cylindrica. Jurnal Kimia VALENSI, 2.

Labied, R., Benturki, O., Eddine Hamitouche, A.Y., & Donnot, A. (2018). Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study. Adsorption Science & Technology, 36(3–4), 1066–1099.

Lakkimsetty, N.R., & Prabhakar, G. (2011). Research Article REMOVAL OF HEAVY METALS BY BIOSORPTION-AN OVERALL REVIEW. Journal of Engineering Studies and Research, 2, 17–22.

Mariana, M., Mulana, F., Juniar, L., Fathira, D., Safitri, R., Muchtar, S., Bilad, M., Shariff, A., & Huda, N. (2021). Development of Biosorbent Derived from the Endocarp Waste of Gayo Coffee for Lead Removal in Liquid Wastewater—Effects of Chemical Activators. Sustainability, 13, 3050.

Martins, R.P., Schmatz, A.A., de Freita, L.A., Mutton, M.J.R., & Brienzo, M. (2021). Solubilization of hemicellulose and fermentable sugars from bagasse, stalks, and leaves of sweet sorghum. Industrial Crops and Products, 170, 113813.

Mopoung, R., & Kengkhetkit, N. (2016). Lead and cadmium removal efficiency from aqueous solution by NaOH treated pineapple waste. 12, 23–35.

Neolaka, Y.A.B., Lawa, Y., Naat, J.N., Pau Riwu, A.A., Darmokoesoemo, H., Supriyanto, G., Holdsworth, C.I., Amenaghawon, A. ., & Kusuma, H.S. (2020). A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater. Reactive and Functional Polymers, 147, 104451.

Nkutha, C.S., Naidoo, E.B., & Shooto, N.D. (2021). Adsorptive studies of toxic metal ions of Cr(VI) and Pb(II) from synthetic wastewater by pristine and calcined coral limestones. South African Journal of Chemical Engineering, 36, 43–57.

Panda, H., Tiadi, N., Mohanty, M., & Mohanty, C.R. (2017). Studies on adsorption behavior of an industrial waste for removal of chromium from aqueous solution. South African Journal of Chemical Engineering, 23, 132–138.

Pant, B.D., Neupane, D., Paudel, D.R., Chandra Lohani, P., Gautam, S.K., Pokhrel, M.R., & Poudel, B.R. (2022). Efficient biosorption of hexavalent chromium from water by modified arecanut leaf sheath. Heliyon, 8(4), e09283.

Rakhunde, R., Deshpande, L., & Juneja, H.D. (2012). Chemical Speciation of Chromium in Water: A Review. Critical Reviews in Environmental Science and Technology, 42(7), 776–810.

Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R., & Zappi, M.E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032.

Samuel, M.S., Bhattacharya, J., Raj, S., Santhanam, N., Singh, H., & Pradeep Singh, N.D. (2019). Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. International Journal of Biological Macromolecules, 121, 285–292.

Shrestha, B., Kour, J., & Ghimire, K. (2016). Adsorptive Removal of Heavy Metals from Aqueous Solution with Environmental Friendly Material—Exhausted Tea Leaves. Advances in Chemical Engineering and Science, 06, 525–540.

Siuki, A.K., Shahidi, A., Taherian, P., & Zeraatkar, Z. (2021). Comparing natural and mineral adsorbents in removing chromium from aquatic environment. Ain Shams Engineering Journal, 12(3), 2593–2601.

Tahoon, M.A., Siddeeg, S.M., Salem Alsaiari, N., Mnif, W., & Ben Rebah, F. (2020). Effective Heavy Metals Removal from Water Using Nanomaterials: A Review. In Processes (Vol. 8, Issue 6).

Thangagiri, B., Sakthivel, A., Jeyasubramanian, K., Seenivasan, S., Dhaveethu Raja, J., & Yun, K. (2022). Removal of hexavalent chromium by biochar derived from Azadirachta indica leaves: Batch and column studies. Chemosphere, 286, 131598.

Tovbin, Y. (2017). The Molecular Theory of Adsorption in Porous Solids. In The Molecular Theory of Adsorption in Porous Solids.

Valentín-Reyes, J., García-Reyes, R.B., García-González, A., Soto-Regalado, E., & Cerino-Córdova, F. (2019). Adsorption mechanisms of hexavalent chromium from aqueous solutions on modified activated carbons. Journal of Environmental Management, 236, 815–822.

Vijayaraghavan, K., & Balasubramanian, R. (2015). Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. Journal of Environmental Management, 160, 283–296.

Wan Ngah, W.S., & Hanafiah, M.A.K.M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99(10), 3935–3948.

Weißpflog, J., Vehlow, D., Müller, M., Kohn, B., Scheler, U., Boye, S., & Schwarz, S. (2021). Characterization of chitosan with different degree of deacetylation and equal viscosity in dissolved and solid state – Insights by various complimentary methods. International Journal of Biological Macromolecules, 171, 242–261.

Yan, T., Luo, X., Lin, X., & Yang, J. (2017). Preparation, characterization and adsorption properties for lead (II) of alkali-activated porous leather particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 512, 7–16.

Zaidi, N.A.H.M., Lim, L.B.L., & Usman, A. (2018). Enhancing adsorption of Pb(II) from aqueous solution by NaOH and EDTA modified Artocarpus odoratissimus leaves. Journal of Environmental Chemical Engineering, 6(6), 7172–7184.

Zarei, M., Djafarzadeh, N., & Khadir, L. (2018). Removal of direct blue 129 from aqueous medium using surfactant-modified zeolite: a neural network modeling. Environmental Health Engineering and Management, 5, 101–113.




DOI: https://doi.org/10.31315/e.v21i2.10783

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".

Contact  Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

 

 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami