Pengaruh Konsentrasi Fenol terhadap Efektivitas Fotodegradasi Fenol menggunakan Komposit Titania-Carbon Nanotube (Surfaktan)
Sari
Kata Kunci
Teks Lengkap:
PDFReferensi
Ai, M., Wenli, Q., Tian, X., Ying, Y., Xuegang, C. & Pingping, Z., 2019, Photocatalytic degradation of 2,4-Dichlorophenol by TiO2 intercalated talc nanocomposite, International Journal of Photoenergy, Vol. 2019, Maret: 1-11.
Alwash, A., Hadeel, A., Zainab, H. & Emad, Y., 2018, Potential of carbon nanotubes in enhance of photocatalyst activity, Archives of Nanomedicine: Open Access Journal, Vol.1 No.3, Juni: 65-70.
Ani, I.J., Akpan, U.G., Olutoye,M.A. & Hameed, B.H., 2018, Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO- based photocatalysts: Recent development, Journal of Cleaner Production, Vol.205, Agustus: 930-954.
Chowdhury, P., Sharmistha, N. & Ajay, K.R., 2017, Degradation of phenolic compounds through UV and visible-light-driven photocatalysis: Technical and economic aspects. Di dalam: Hernandez, M.S. (ed). Phenolic Compounds Natural Sources, Importance and Applications. hlm 395-417. InTech, Open Science, doi: 10.5772/66134.
Dang, T.T.T., Le,S.T.T., Channel, D.,Khanitchaidecha, W. & Nakaruk, A., 2016, Photodegradation mechanisms of phenol in the photocatalytic process, Research on Chemical Intermediates, Vol.42 No.6, Desember: 5961-5974.
Deiana, C., Ettore, F., Salvatore, C. & Gianmaria, M., 2010, Surface structure of TiO2 P25 nanoparticles: infrared study of hydroxy groups on coordinative defect sites, Journal of Physical Chemistry C, Vol.114 No.49, November: 21531-21538.
Dong, H., Guangming, Z., Lin, T., Changzheng, F., Chang, Z., Xiaohiao, H., & Yan, H, 2015, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Research, Vol.79, Mei: 128-146.
Gangu, K.K., Suresh, M. & Sreekantha, B.J., 2019, A review on novel composites of MWCNTs mediated semiconducting materials as photocatalysts in water treatment, Science of the Total Environment, Vol.646, Juli: 1398-1412.
Heltina, D., Karina, O.V. & Slamet., 2014, Efektivitas kinerja komposit carbon nanotube-titania untuk eliminasi fenol, Simposium Nasional RAPI XII.K-42 – K-49, Universitas Muhammadiyah Surakarta, ISSN: 1412-9612.
Ho, T.N.S, Nguyen, T.T., Pham, T.H.T., Ngo, M.T., & Le, M.V, 2020, Photocatalytic degradation of phenol in aqueous solutions using TiO2/SiO2 composite, Chemical Engineering Transactions, Vol.78, Februari: 427-432.
Lamprecht, C., J. Torin, H., Marina, V.I & Marianna, F., 2011, Non-covalent functionalization of carbon nanotubes with surfactants for pharmaceutical applications- A critical mini-review, Drug Delivery Letters, Vol.1 No.1, Juli: 45-57.
Laoufi, N.A., Tassalit,D. & Bentahar, F., 2008, The degradation of phenol in water solution by TiO2photocatalysis in a helical reactor, Global NEST Journal, Vol.10 No.3, Januari: 404-418.
Li, H., & Qiu, Y., 2019, Dispersion, sedimentation and aggregation of multi-walled carbon nanotubes as affected by single and binary mixed surfactants, Royal Society Open Science, Vol.6 No.7, Juli: 1-9.
Luttrell, T., Sandamali, H., Junguang, T., Alan, K., Eli, S. & Matthias, B., 2014, Why is anatase a better photocatalyst than rutile? –Model studies on epitaxial TiO2 films, Scientific Reports, Vol.4 No.4043, Februari: 1-9, doi: 10.1038/srep04043.
Neto, J.O.M., Carlos, R.B., Carlos, H.F.S., Rene, C.S. & Pablo, A.R., 2017, Synthesis, characterization and enhanced photocatalytic activity of iron oxide/carbon nanotube/Ag-doped TiO2 nanocomposites, Journal Brazil Chemical Society, Vol.28 No.12, Mei: 2301-2312.
Park, K., En, M.J., Hal, B.G., Sang, E.S. & Chang, K.H., 2009, Effects of HNO3 treatment of TiO2 nanoparticles on the photovoltaic properties of dye-sensitized solar cells, Material Letters, Vol.63 No.26, Juli: 2208-2211.
Rahmani, A., Hadi, R. & Somayeh, B., 2019, Photocatalytic degradation of phenolic compound (phenol, resorcinol and cresol) by titanium dioxide photocatalyst on ordered mesoporous carbon (CMK-3) support under UV irradiation, Desalination and Water Treatment, Vol.144, Juni: 224-232.
Richards, C., Mansur, S.M. & Gordon, J.T.T., 2009, Formulating liquid detergents with naturally derived surfactants-phase behaviour, crystallisation and rheo-stability of primary alkyl sulfates based on coconut oil, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.338 No.1-3, April: 119-128.
Safni, Mechy R.W., Khoiriah, & Yulizar, Y., 2019, Photodegradation of phenol using N-doped TiO2 catalyst, Molekul, Vol.14 No.1, Mei: 6-10.
Shaban, M., Abdallah, M.A. & Mostafa, R.A., 2018, TiO2 nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application, Scientific Reports, Vol.8 No.1, Januari: 1-17.
Shahbazi, H., Alireza, S. & Saeed, S., 2018, The effect of carbon nanotubes functionalization on the band-gap energy of TiO2-CNT nanocomposites, AIP Conference Proceedings, hlm. 0200401-0200404.
Shawabkeh, R.A., Omar, A.K. & Gasan, I.B., 2010, Photocatalytic degrdation of phenol using Fe-TiO2 by different illumination sources, International Journal of Chemistry, Vol.2 No.2, July: 10-18.
Zabihi, F., Mohamed, R.A.Y. & Morteza, E., 2017, Photocatalytic graphene-TiO2 thin films fabricated by low-temperature ultrasonic vibration-assisted spin and spray coating in a sol-gel process, Catalysts, Vol.7 No.5, Mei: 1-16.
Zhang, J., Peng, Z., Jianjun, L. & Jiaguo, Y., 2014, New understanding of the difference of photocataytic activity among anatase, rutile and brookite TiO2, Physical Chemistry Chemical Physics, Vo1.6 No.38, Agustus: 20382-20386.
Zhang, Q., Nan, B., Xinqiang, W., Xinde, H., Xinhan, M., Mohamed, C., & Dongling, M., 2016, Advanced fabrication of chemical bonded graphene/TiO2 continuous fibers with enhanced broadband photocatalytic properties and involved mechanisms exploration, Scientific Reports, Vol.6 No.38066, Desember: 1-15. doi: 10.1038/srep38066.
Zueva, O.S., Makshakova, O.N., Idiyatullin, B.Z., Faizullin,D.A., Benevolenskaya, N.N., Borovskaya, A.O. & Yu, F.Z., 2016, Structure and properties of aqueous dispersions of sodium dodecyl sulfate with carbon nanotubes, Russian Chemical Bulletin, International Edition, Vol.65 No.5, Mei: 1208-1215.
DOI: https://doi.org/10.31315/e.v17i2.3691
Refbacks
- Saat ini tidak ada refbacks.
##plugins.generic.alm.title##
Metrics powered by PLOS ALM
Eksergi ISSN-p 1410-394X, ISSN-e 2460-8203 diterbitkan oleh Prodi Teknik Kimia Universitas Pembangunan Nasional "Veteran" Yogyakarta.
Sekretariat: Prodi Teknik Kimia UPN "Veteran" Yogyakarta Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta 55283
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Jumlah Pengunjung: