PENENTUAN STATUS KEKERINGAN BERDASARKAN SUHU PERMUKAAN DAN INDEKS KELEMBABAN TANAH MENGGUNAKAN CITRA LANDSAT 8 DI KAPANEWON PAJANGAN KABUPATEN BANTUL DAERAH ISTIMEWA YOGYAKARTA

Firdauzi Wasitama, Sari Virgawati

Abstract


Drought cases in Kapanewon Pajangan Bantul Regency often occur. The purpose of this study was to determine the level of soil moisture, land surface temperature conditions, and make a map of the distribution of drought status with a spatial approach to the Normalize Difference Moisture Index (NDMI), Land Surface Temperature (LST), and Normalize Difference Vegetation Index (NDVI) methods based on Landsat 8 imagery. The results showed that the soil moisture index was divided into 3 classes, namely humid with an area of 206,80 ha (6,27%), dry with an area of 2985,99 ha (90,53%), and very dry with an area of 105,649 ha (3,20%). The land surface temperature level is divided into 4 classes, namely very low (< 22,77 oC) with an area of 144,46 ha (4,38%), low (22,77 oC – 23,17 oC) with an area of 231,06 ha (7,31%), medium (23,17oC – 24,77oC) with an area of 2453,80 ha (74,37%), and high (> 24,77 oC) with an area of 460,15 ha (13,95%). The drought status in Kapanewon Pajangan is divided into 3 drought classes, namely low class with an area of 477,31 ha (14,55%), medium class with an area of 2589,98 ha (78,98%), and high class with an area of 212,15 ha (6,47%). The results of the Pearson correlation test of soil moisture index to water content at pF 2,54 and pF 4,2 included a strong positive correlation (r = 0,720 and r = 0,780). Pearson correlation test results of greenness level to water content at pF 2,54 had a moderately strong positive correlation (r = 0,598) and at pF 4,2 had a strong positive correlation (r = 0,783). Pearson correlation test results of LST soil surface temperature to moisture content at pF 2,54 had a strong negative correlation (r = -0,724) and at pF 4,2 had a very strong negative correlation (r = -0,838), while the correlation results with field soil surface temperature at pF 2,54 and pF 4,2 had a strong negative correlation (r = -0,631 and r = -0,787).


Keywords


Drought, Normalize Difference Moisture Index (NDMI), Land Surface Temperature (LST), Normalize Difference Vegetation Index (NDVI)

Full Text:

PDF

References


BMKG DIY, 2023. BMKG DIY Prediksi Musim Kemarau 2023 Lebih Kering dibandingkan Tahun Sebelumnya. Diakses pada 14 Juni 2023 dari https://jogja.tribunnews.com/2023/04/27/bmkg-diy-prediksi-musim-kemarau-2023-lebih-kering-dibandingkan-tahun-sebelumnya

Desi. 2011. Aplikasi Penginderaan Jauh untuk Menduga Suhu Permukaan dan Udara di Lahan Gambut dan Mineral dengan Menggunakan Metode Neraca Energi (Area Studi : Sampit, Kalimantan Tengah). SKRIPSI. Departemen Geofisika dan Meteorologi. Fakultas Matematika dan Ilmu Pengetahuan Alam. Institut Pertanian Bogor.

Dian, R. 2010. Penentuan daerah potensial genangan di sebagian kota surakarta dengan teknik penginderaan jauh dan sig. Skripsi. Yogyakarta. UGM

Dinas Pengelolaan Sumber Daya Air, 2003. Draft Final TKPSDA. Jakarta : Kementrian Pengelolaan Sumber Daya Air.

Fersely. 2007. Identifikasi Indikator Kekeringan menggunakan teknik Penginderaan Jauh. Artikel Skripsi. Bogor: IPB.

Haikal, T. 2014. Analisis Normalized Difference Wetness Index (Ndwi) Dengan Menggunakan Data Citra Landsat 5 Tm (Studi Kasus : Provinsi Jambi Path/Row : 125/61). Paper Knowledge. Toward a Media History of Documents, 31.

Khasanah, F., Astrid, D., Tjiong, G. P. 2017. Pola Spasial Bahaya Kekeringan di Kabupaten Cilacap. Jurnal Polbangtan. Vol 8 (2017) : Industrial Research Workshop and National Seminar. DOI : https://doi.org/10.35313/irwns.v8i3.787

Murtilaksono, K, dan E. D. Wahjunie. 2004. Hubungan Ketersediaan Air Tanah dan Sifat-Sifat Dasar Fisika Tanah. Jurnal Tanah dan Lingkungan, 2(6), 4669.

Ningrum, W. 2018. Deteksi Perubahan Suhu Permukaan Menggunakan Data Satelit Landsat Multi-Waktu Studi Kasus Cekungan Bandung. Jurnal Teknologi Lingkungan. Vol. 19 No. 2. https://doi.org/10.29122/jtl.v19i2.2250

Norma, Y., S. 2018. Analisis Soil Moisture Index (Smi) Untuk Kelembaban Tanah Dengan Citra Landsat 8 Oli/Tirs Di Kebun Percobaan Karangploso, Kabupaten Malang. Skripsi. Fakultas Pertanian : Universitas Brawijaya.

Prayoga, M., P. 2017. Analisis Spasial Tingkat Kekeringan Wilayah Berbasis Penginderaan Jauh Dan Sistem Informasi Geografis (Studi Kasus : Kabupaten Tuban). Tesis. Departemen Teknik Geomatika, Fakultas Teknik Sipil Dan Perencanaan, Institut Teknologi Sepuluh Nopember, Surabaya

Rejogja, 2023. BPBD DIY Sebut 27 Kapanewon di DIY Rawan Bancana Kekeringan. Diakses pada 14 Juni 2023 dari https://rejogja.republika.co.id/berita/rtvhuc399/ bpbd-diy-sebut-27-Kapanewon-di-diy-rawan-bancana-kekeringan




DOI: https://doi.org/10.31315/jta.v21i1.13950

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Jurnal Tanah dan Air ISSN 1411-5719 (print) , ISSN 2655-500X (online)

 

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor