DETEKSI DAN IDENTIFIKASI UKURAN OBYEK ABNORMAL (STUDI KASUS : CITRA OTAK MANUSIA)
Abstract
Makalah ini membahas tentang otomatisasi sistem untuk identifikasi ukuran obyek abnormal pada citra otak manusia. Untuk dapat melakukan identifikasi terlebih dahulu harus melakukan proses deteksi. Deteksi dilakukan menggunaan operasi substract, segmentasi watershed dengan metode disk filter, dan operasi morfologi. Fungsi morfologi yang digunakan adalah fspecial dan imfilter. Untuk melakukan marker pada latar depan, operasi morfologi yang dikerjakan adalah opening by reconstruction (dengan fungsi strel, imopen, imerode, imreconstruct). Sedangkan untuk identikasi ukuran dilakukan dengan menghitung jumlah piksel citra hasil deteksi. Citra yang dibutuhkan adalah citra otak normal dan beberapa citra otak abnormal dengan lokasi yang berbeda-beda dalam bentuk 2D. Dari citra yang sudah diujicoba, sistem dapat mendeteksi dan mengidentifikasi dengan baik ukuran citra abnormal..
Full Text:
PDF (Bahasa Indonesia)References
Ariffanan Mohd, Medical Image Classification And Sysptons Detection Using Neuro Fuzzy, 2008 Univerisiti Teknologi Malaysia.
Gonzales, RC., Woods, RE.,2008, Digital Image Processing 3’rd edition, Prentice Hall.
Gonzales, RC., Woods, RE., 2004, Digital Image Processing Using MAtlab, Prentice Hall.
Kononnenko, I., 2001, “Machine Learning for medical diagnosis: history, state of the art and perspective”, Artificial Intelligent in Medicine.
Land, Jr, W.H and Lo,J.J.Y,and Velazquez, R,2002, “Using evolution programming to configure support vector machine for the diagnosis of breast cancer”, In Dagli, C.H, et al (Eds) Intelligent Engineering Systems through artificial neural network ANNIE’2002, Smart engineering System Design , ASME Press, New York.
Nakamoto, T, et al,2007, A computer-aided system system to screen for osteoporosis using dental panoramic radiographs”, Dentomaxillofacial Radiology : British Institute of Radiology.
Nauck,D. and Kruse,R., 1999, “Obtaining interpretable fuzzy classification rules from medical data”, Artificial intelligence in medicine 16:149-169.
Rao KNRM, “Apllication of mathematical morphology to biomedical image processing”, 2004, University Westminster.
Setiono, R., 2000, “Generating concise and accurate classification rules for breast cancer diagnosis ”, Artificial Intelligence in Medicine 18:205-219.
Mike, Susmikanti, 2010, Proceeding: Pengenalan Pola Berbasis Jaringan Syaraf Tiruan Dalam Analisas CT Scan Tumor Beligna, SNATI 2010, Universitas Islam Indonesia, Yogyakarta.
Sutoyo dkk, 2009, Teori Pengolahan Citra Digital, Penerbit Andi, Yogyakarta.
The MathWorks Inc., Image Processing Toolbox 7 User’s Guide, Natick MA.
West,D and West , V., 2000, “Model Selection for a Medical Diagnotic Decision Support System a breast cancer diagnosis case”, Artificial Intelligent in Medicine.
Duda RO, Hart PE, Stork DG. 2001. Pattern Classification 2nd. USA : John Wiley & Sons, Inc.
Pitas I. 1993. Digital Image Processing Algorithms, Prentice Hall International (UK) Ltd.
Nazzrul Efendi, Rizqy Imanto, Ayodya PT, 2001, “Deteksi Pornografi dalam Citra Digital menggunakan Pengolahan Citra dan JST”, Jurusan Teknik Fisika, UGM, diakses tgl 13 mei 2011
Kanda Irawan, 2011, “Deteksi Manusia menggunakan Webcam pada Aplikasi Berbasis Kecerdasan Buatan”, Fasilkom, Unikom, diakses 12 mei 2011
Yu-qian, Zhao, etc,2005, “Medical Images Edge Detection Based on Mathematical Morphology”, Proceedings : IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, September 1-4, 2005
Sercic, Damir and Loncaric, Sven., “Enhancement of Mammographics Images for Detection of Microcalcifications”, Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and Computing,University of Zagreb, Croatia
Mohamed, Aamer .S.S., etc; “Face Detection based on Skin Color in Image by Neural Networks”, School of Informatics, University of Bradford, UK
Refbacks
- There are currently no refbacks.