The Implementation of Color Feature Extraction and Gray Level Co-occurrence Matrix Combination in K-Nearest Neighbor Classification Method for Tomato Leaf Disease Identification

Sandy Wahyu Agusta, Wilis Kaswidjanti

Abstract


Purpose: Tomato plants are quite important commodities in Indonesia. With a complete and good content of substances, tomatoes become a product that is widely consumed by the public. However, much of the decline in crop production is caused by plant disruptive organisms such as viruses and bacteria. Early identification of plant diseases is expected to prevent the spread of diseases caused by these organisms.

Design/methodology/approach: In this study the data used in machine training are data from kaggle sites. This study uses the K-Nearest Neighbor classification method with a combination method of extracting feature on RGB, HSV and GLCM images to obtain the best accuracy value.

Findings/Results: Based on the test results among the combination methods of feature extraction in the process of identifying tomato leaf diseases which are classified into 7, namely testing units of RGB, HSV, GLCM followed by a combination of RGB HSV, RGB GLCM, HSV GLCM, and RGB HSV GLCM methods obtained a comparison value of 71.5%, 72.9%, 79%, 82.5%, 90.6%, 87.4% and 87.7%. Based on these data, it was concluded that with the combination of the RGB GLCM method obtained the best accuracy value in the identification of tomato leaf disease with an accuracy rate of 90.6%.

Originality/value/state of the art: The use of the K-Nearest Neighbor classification method in this study combines the collection of selected characteristics so as to get a comparison of 7 combination groups between RGB, HSV, and GLCM.


Keywords


Classification; K-Nearest Neighbor; RGB; HSV; GLCM

Full Text:

PDF

References


T. A. P. K. A. Y. Ida Bagus Gede Mahendra, "Pengaruh Infeksi Beberapa Jenis Virus Terhadap Penurunan Hasil Produksi Tanaman Tomat ( Solanum lycopersicum Mill.) Di Dusun Marga Tengah, Desa Kerta,Kecamatan Payangan, Kabupaten Gianyar," E-Jurnal Agroekoteknologi Tropika, vol. 6, pp. 301-309, 2017.

S. F. T. F. M. B. P. S. Felix, "Implementasi CNN dan SVM untuk Identifikasi Penyakit Tomat via Daun," Jurnal SIFO Mikroskil, vol. 20, pp. 117-134, 2019.

A. A. A. L. Isman, "Perbandingan Metode KNN Dan LBPH Pada Klasifikasi Daun Herba," JURNAL RESTI, pp. 557-564, 2019.

L. N. N. I. Rahma Nur Auliasari, "Identifikasi Kematangan Daun Teh Berbasis Fitur Warna Hue Saturation Intensity (HSI) dan Hue Saturation Value (HSV)," JUITA: Jurnal Informatika, vol. VIII, pp. 217-223, 2020.

T. S. D. R. I. M. S. Fittria Shofrotun Ni’mah, "Identifikasi Tumbuhan Obat Herbal Berdasarkan Citra Daun Menggunakan Algoritma Gray Level Co-occurence Matrix dan K-Nearest Neighbor," Jurnal Teknologi dan Sistem Komputer, pp. 51-56, 2018.

E. H. R. Pulung Nurtantio Andono, "Evaluasi Ekstraksi Fitur GLCM dan LBP Menggunakan Multikernel SVM untuk Klasifikasi Batik," JURNAL RESTI, pp. 1-9, 2019.

Z. Z. C. H. M. D. O. R. Z. a. M. J. Xuebin Qin, "U²-Net : Going Deeper with Nested U-Structure for Salient Object Detection," pp. 1-15, 2022.

G. L. S. ,. H. F. Reni Rahmadewi, "Pendeteksian Kematangan Buah Jeruk Dengan Fitur Citra Kulit Buah Menggunakan Transformasi Ruang Warna HSV," JURNAL TEKNIK ELEKTRO DAN VOKASIONAL, pp. 167-171, 2019.

A. R. Novan Wijaya, "Klasifikasi Jenis Buah Apel Dengan Metode K-Nearest Neighbors," Jurnal SISFOKOM, vol. 08, pp. 74-78, 2019.

V. P. Nitish Zulpe, "GLCM Textural Features for Brain Tumor Classification," JCSI International Journal of Computer Science, vol. 9, no. 3, pp. 354-359, 2012.

N. W. Herry Kamaruddin Sanjaya, "Klasifikasi Jenis Pisang Menggunakan Support Vector Machine dengan Fitur GLCM dan HOG," Indonesian Journal of Computer Science, vol. 9, pp. 129-143, 2020.

N. A. H. Jani Kusanti, "Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut," Jurnal Informatika: Jurnal Pengembangan IT (JPIT), vol. 3, pp. 1-6, 2018.

D. S. I. M. Muhamad Ichsan Gunawan, "Peningkatan Kinerja Akurasi Prediksi Penyakit Diabetes Mellitus Menggunakan Metode Grid Seacrh pada Algoritma Logistic Regression," Jurnal Edukasi dan Penelitian Informatika, vol. 6, pp. 280-284, 2020.

A. A. S. Irvi Oktanisa, "PERBANDINGAN TEKNIK KLASIFIKASI DALAM DATA MINING UNTUK BANK DIRECT MARKETING," Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 5, pp. 567-576, 2018.

V. R. U. S. B. P. Sachin B. Jadhav, "Soybean leaf disease detection and severity measurement using multiclass SVM and KNN classifier," International Journal of Electrical and Computer Engineering (IJECE), pp. 4077-4091, 2019.

Z. E. F. A. M. A. M. N. I. Niske Elmy Paulina, "Klasifikasi Kerusakan Mutu Tomat Berdasarkan Seleksi Fitur Menggunakan K-Nearest Neighbor," MIND (Multimedia Artificial Intelligent Networking Database) Journal, vol. 6, pp. 144-154, 2021.




DOI: https://doi.org/10.31315/telematika.v20i2.10009

DOI (PDF): https://doi.org/10.31315/telematika.v20i2.10009.g5670

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika