OPTIMALISASI SUPPORT VEKTOR MACHINE (SVM) UNTUK KLASIFIKASI TEMA TUGAS AKHIR BERBASIS K-MEANS
Oman Somantri, Slamet Wiyono, Dairoh Dairoh
Abstract
The difficulty in determining the classification of students final project theme often experienced by each college. The purpose of this study is to provide a decision support for policy makers in the study program so that each student can be achieved in accordance with their own competence. From the research that has been done text mining algorithms using Support Vector Machine ( SVM ) and K -Means as the technology used was produced a better accuracy rate with an accuracy rate of 86.21 % when compared to the SVM without K -Means is 85 , 38 %
DOI:
https://doi.org/10.31315/telematika.v13i2.1722
DOI (PDF):
https://doi.org/10.31315/telematika.v13i2.1722.g1569
Refbacks
There are currently no refbacks.
Copyright of : TELEMATIKA: Jurnal Informatika dan Teknologi Informasi ISSN 1829-667X (print); ISSN 2460-9021 (online) Dipublikasi oleh Jurusan Teknik Informatika, UPN Veteran Yogyakarta Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II) Telp: +62 274 485786 email: jurnaltelematika@upnyk.ac.id
Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
<div class="statcounter"><a title="web counter" href="https://statcounter.com/" target="_blank"><img class="statcounter" src="https://c.statcounter.com/10072775/0/233cb733/0/" alt="web counter"></a></div> Status Kunjungan Jurnal Telematika