OPTIMALISASI SUPPORT VEKTOR MACHINE (SVM) UNTUK KLASIFIKASI TEMA TUGAS AKHIR BERBASIS K-MEANS

Oman Somantri, Slamet Wiyono, Dairoh Dairoh

Abstract


The difficulty in determining the classification of students final project theme often experienced by each college. The purpose of this study is to provide a decision support for policy makers in the study program so that each student can be achieved in accordance with their own competence. From the research that has been done text mining algorithms using Support Vector Machine ( SVM ) and K -Means as the technology used was produced a better accuracy rate with an accuracy rate of 86.21 % when compared to the SVM without K -Means is 85 , 38 %

Full Text:

PDF


DOI: https://doi.org/10.31315/telematika.v13i2.1722

DOI (PDF): https://doi.org/10.31315/telematika.v13i2.1722.g1569

Refbacks

  • There are currently no refbacks.




Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika