Cluster Analysis of Hospital Inpatient Service Efficiency Based on BOR, BTO, TOI, AvLOS Indicators using Agglomerative Hierarchical Clustering

Tresna Maulana Fahrudin, Prismahardi Aji Riyantoko, Kartika Maulida Hindrayani, Made Hanindia Prami Swari

Abstract


Purpose: The research proposed an approach for grouping hospital inpatient service efficiency that have the same characteristics into certain clusters based on BOR, BTO, TOI, and AvLOS indicators using Agglomerative Hierarchical Clustering.

Design/methodology/approach: Applying Agglomerative Hierarchical Clustering with dissimilarity measures such as single linkage, complete linkage, average linkage, and ward linkage.

Findings/result: The experiment result has shown that ward linkage was given a quite good score of silhouette coefficient reached 0.4454 for the evaluation of cluster quality. The cluster formed using ward linkage was more proportional than the other dissimilarity measures. Ward linkage has generated cluster 0 consists of 23 members, cluster 1 consists of 34 members, while both of cluster 2 and 3 consists of only 1 member respectively. The experiment reported that each cluster had problems with inpatient indicators that were not ideal and even exceeded the ideal limit, but cluster 0 generated the ideal BOR and TOI parameters, both reached 52.17% (12 of 23 hospital inpatient) and 78.36% (18 of 23 hospital inpatient) respectively.

Originality/value/state of the art: Based on previous research, this study provides an alternative to produce more proportional, representative and quality clusters in mapping hospital inpatient service efficiency that have the same characteristics into certain clusters using Agglomerative Hierarchical Clustering Method compared to the K-means Clustering Method which is often trapped in local optima.

 


Keywords


cluster analysis; hospital; inpatient; agglomerative hierarchical clustering; silhouette coefficient

Full Text:

PDF

References


S. P. S. Lubis dan C. Astuti, “Analisis Efisiensi Penggunaan Tempat Tidur di RSJ Prof. DR. M. Ildrem Medan Per Ruangan Berdasarkan Indikator Rawat Inap di Triwulan 1 Tahun 2018,” Jurnal Ilmiah Perekam dan Informasi Kesehatan Imelda, vol. 3, no. 2, pp. 466-472, 2018.

N. F. Dewi dan S. K. Radityo, “The Performance Analysis of Inpatient Installation at Tria Dipa Hospital with Balanced Scorecard, 2013–2015,” KnE Social Sciences, vol. 3, no. 11, p. 1566–1583, 2018.

R. Sidiq dan R. Afrina, “Kajian Efisiensi Pelayanan Rumah Sakit,” Idea Nursing Journal, vol. 8, no. 1, pp. 29-34, 2017.

V. Cahyati, H. Rohman dan E. P. Nurcahyati, “Efektitas Kebijakan Rumah Sakit Bhayangkara Polda DIY Dilihat dari Grafik Barber Johnson,” dalam SMIKNAS, Surakarta, 2019.

D. K. S. Profil Kesehatan Kota Surabaya Tahun 2017, Surabaya: Dinas Kesehatan Pemerintahan Kota Surabaya, 2017.

B. Santosa dan A. Umam, Data Mining dan Big Data Analytics, Yogyakarta: Penebar Media Pustaka, 2018.

L. Elezabeth, V. P. Mishra and J. Dsouza, "The Role of Big Data Mining in Healthcare Applications," in 7th International Conference on Reliability, Infocom Technologies and Optimization (ICRITO), Amity Institute of Information Technology (AIIT), Noida, India, 2018.

S.-F. Tseng, T.-S. Lee dan C.-Y. Deng, “Cluster Analysis of Medical Service Resources at District Hospitals in Taiwan, 2007-2011,” Journal of the Chinese Medical Association , vol. 78, no. 12, pp. 732-745, 2015.

Z. Zhang, F. Murtagh, S. V. Poucke, S. Lin dan P. Lan, “Hierarchical Cluster Analysis In Clinical Research With Heterogeneous Study Population: Highlighting Its Visualization With R,” Annals of Translational Medicine, vol. 5, no. 4, p. 75, 2017.

J. K. Samriya, S. Kumar dan S. Singh, “Efficient K-means Clustering for Healthcare Data,” Advanced Journal of Computer Science and Engineering (AJCST), vol. 4, no. 2, pp. 1-7, 2016.

M. R. Khoie, T. S. Tabrizi, E. S. Khorasani, S. Rahimi dan N. Marhamati, “A Hospital Recommendation System Based on Patient Satisfaction Survey,” Applied Sciences, vol. 7, no. 10, p. 966, 2017.

F. H. Saad, O. . I. E. Mohamed dan R. E. Al-Qutaish, “Comparison Of Hierarchical Agglomerative Algorithms For Clustering Medical Documents,” International Journal of Software Engineering & Applications (IJSEA), vol. 3, no. 3, pp. 1-15, 2012.

G. Aksu, C. O. Güzeller dan M. . T. Eser, “The Effect of the Normalization Method Used in Different Sample Sizes on the Success of Artificial Neural Network Model,” International Journal of Assessment Tools in Education, vol. 6, no. 2, pp. 170-192, 2019.

P.-N. Tan, M. Steinbach, A. Karpatne dan V. Kumar, Introduction to Data Mining 2nd Edition, United States: Pearson, 2019.

M. Roux, “A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms,” Journal of Classification, vol. 35, no. 2, pp. 345-366, 2018.

M. . D. Malkauthekar, "Analysis of Euclidean Distance and Manhattan Distance Measure in Face Recognition," in 3rd International Conference on Computational Intelligence and Information Technology, Mumbai, India, 2013.

J. H. W. Jr., "Hierarchical Grouping to Optimize an Objective Function," Journal of American Statistical Association, vol. 58, no. 301, pp. 236-244, 1963.

M. . Z. Rodriguez, C. . H. Comin, D. Casanova, O. . M. Bruno, D. R. Amancio, L. d. F. Costa dan F. A. Rodrigues, “Clustering Algorithms: A Comparative Approach,” PLoS ONE, vol. 14, no. 1, pp. 1-34, 2019.




DOI: https://doi.org/10.31315/telematika.v18i2.4786

DOI (PDF): https://doi.org/10.31315/telematika.v18i2.4786.g3952

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika