Data Mining for Determining The Best Cluster Of Student Instagram Account As New Student Admission Influencer
Abstract
Purpose: This study aims to apply the web data extraction method to extract student Instagram account data and the K-Means data mining method to perform clustering automatically to determine the best cluster of students' Instagram accounts as influencers for new student admissions.
Design/methodology/approach: This study implemented the web data extraction method to extract student Instagram account data. This study also implemented a data mining method called K-Means to cluster data and the Silhouette Coefficient method to determine the best number of clusters.
Findings/result: This study has succeeded in determining the seven best student accounts from 100 accounts that can be used as influencers for new student admissions with the highest Silhouette Score for the number of influencers selected between 5-10, which is 0.608 of the 22 clusters.
Originality/value/state of the art: Research related to the determination of the best cluster of students' Instagram accounts as new student admissions influencers using web data extraction and K-Means has never been done in previous studies.Keywords
Full Text:
PDFReferences
S. Sari, “LITERASI MEDIA PADA GENERASI MILENIAL DI ERA DIGITAL,” Prof. J. Komun. dan Adm. Publik, vol. 6, no. 2, pp. 30–42, Dec. 2019, doi: 10.37676/professional.v6i2.943.
T. Mutia, “GENERASI MILENIAL, INSTAGRAM DAN DRAMATURGI : SUATU FENOMENA DALAM PENGELOLAAN KESAN,” J. komunikasiana, vol. 1, no. 1, pp. 38–47, Feb. 2018, doi: 10.24014/AN-NIDA.V41I2.4656.
A. Ambarwati and S. T. Raharjo, “Prinsip Kepemimpinan Character of A Leader pada Era Generasi Milenial,” Philanthr. J. Psychol., vol. 2, no. 2, p. 114, Dec. 2018, doi: 10.26623/philanthropy.v2i2.1151.
W. A. Social and Hootsuite, “Digital 2021: The Latest Insights Into The ‘State of Digital’ - We Are Social,” 2021. [Online]. Available: https://wearesocial.com/blog/2021/01/digital-2021-the-latest-insights-into-the-state-of-digital. [Accessed: 18-Mar-2021].
P. Lestari and M. Saifuddin, “Implementasi Strategi Promosi Produk Dalam Proses Keputusan Pembelian Melalui Digital Marketing Saat Pandemi Covid’19,” J. Manaj. dan Inov., vol. 3, no. 2, pp. 23–31, Aug. 2020, doi: 10.15642/manova.v3i2.301.
A. Priadana and M. Habibi, “Face detection using haar cascades to filter selfie face image on instagram,” in Proceeding - 2019 International Conference of Artificial Intelligence and Information Technology, ICAIIT 2019, 2019, pp. 6–9, doi: 10.1109/ICAIIT.2019.8834526.
A. Konstantopoulou, I. Rizomyliotis, K. Konstantoulaki, and R. Badahdah, “Improving SMEs’ competitiveness with the use of Instagram influencer advertising and eWOM,” Int. J. Organ. Anal., vol. 27, no. 2, pp. 308–321, Apr. 2019, doi: 10.1108/IJOA-04-2018-1406.
S. Lee and E. Kim, “Influencer marketing on Instagram: How sponsorship disclosure, influencer credibility, and brand credibility impact the effectiveness of Instagram promotional post,” J. Glob. Fash. Mark., vol. 11, no. 3, pp. 232–249, Jul. 2020, doi: 10.1080/20932685.2020.1752766.
M. R. Handika and G. S. Darma, “Strategi Pemasaran Bisnis Kuliner Menggunakan Influencer Melalui Media Sosial Instagram,” J. Manaj. Bisnis, vol. 15, no. 2, pp. 192–203, Apr. 2018, doi: 10.38043/JMB.V15I2.601.
R. Jaakonmäki, O. Müller, and J. vom Brocke, “The Impact of Content, Context, and Creator on User Engagement in Social Media Marketing,” in Proceedings of the 50th Hawaii International Conference on System Sciences (2017), 2017, doi: 10.24251/hicss.2017.136.
M. I. Akrianto, A. D. Hartanto, and A. Priadana, “The Best Parameters to Select Instagram Account for Endorsement using Web Scraping,” in 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 2019, pp. 40–45, doi: 10.1109/ICITISEE48480.2019.9004038.
A. Himawan, A. Priadana, and A. Murdiyanto, “Implementation of Web Scraping to Build a Web-Based Instagram Account Data Downloader Application,” IJID (International J. Informatics Dev., vol. 9, no. 2, pp. 59–65, Oct. 2020, doi: 10.14421/IJID.2020.09201.
M. A. Utami, M. T. Lestari, and B. P. S. Putri, “STRATEGI KOMUNIKASI PEMASARAN SMB TELKOM UNIVERSITY TAHUN 2015/2016 MELALUI MEDIA SOSIAL INSTAGRAM,” J. Sosioteknologi, vol. 15, no. 2, pp. 309–318, Aug. 2016, doi: 10.5614/sostek.itbj.2016.15.02.13.
F. Faradika, R. Astri, and Z. Zulfahmi, “SISTEM INFORMASI PENJADWALAN OTOMATIS MEDIA SOSIAL INSTAGRAM UNTUK MENDUKUNG PROMOSI PROGRAM STUDI DI UNIVERSITAS DHARMA ANDALAS,” J. Teknol. Dan Sist. Inf. Bisnis, vol. 2, no. 2, pp. 225–230, Jul. 2020, doi: 10.47233/jteksis.v2i2.149.
Y. Aditiya Pratama, A. Wibasuri, L. Hakim, and I. nformatika dan Bisnis Darmajaya, “ANALYSIS OF THE SOCIAL MEDIA USAGE ON THE DECISION TO THE ADMISSION OF NEW STUDENT PROCESS IN PRIVATE UNIVERSITY (Case Study: IBI Darmajaya Bandar Lampung),” Dec. 2019.
N. L. Anggreini, “TEKNIK CLUSTERING DENGAN ALGORITMA K-MEDOIDS UNTUK MENANGANI STRATEGI PROMOSI DI POLITEKNIK TEDC BANDUNG,” J. Teknol. Inf. dan Pendidik., vol. 12, no. 2, pp. 1–7, Dec. 2019, doi: 10.24036/tip.v12i2.215.
M. A. Kasri and H. Jati, “Combination of K-Means and Simple Additive Weighting in Deciding Locations and Strategies of University Marketing,” undefined, 2020.
S. Darma and G. W. Nurcahyo, “Klasterisasi Teknik Promosi dalam Meningkatkan Mutu Kampus Menggunakan Algoritma K-Medoids,” J. Inform. Ekon. Bisnis, pp. 89–94, Mar. 2021, doi: 10.37034/infeb.v3i3.87.
Sugiyono, Metode Penelitian Pendidikan Pendekatan Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta, 2017.
R. C. Pereira and T. Vanitha, “Web Scraping of Social Networks,” Int. J. Innov. Res. Comput. Commun. Eng., vol. 3, no. 7, pp. 237–240, 2015.
Fatmasari, Y. N. Kunang, and S. D. Purnamasari, “Web Scraping Techniques to Collect Weather Data in South Sumatera,” in Proceedings of 2018 International Conference on Electrical Engineering and Computer Science, ICECOS 2018, 2019, doi: 10.1109/ICECOS.2018.8605202.
A. I. Abdullah, E. Winarko, and A. Musdholifah, “Metode Boost-K-means untuk Clustering Puskesmas berdasarkan Persentase Bayi yang Diimunisasi,” JRST (Jurnal Ris. Sains dan Teknol., vol. 4, no. 2, p. 89, Nov. 2020, doi: 10.30595/jrst.v4i2.7546.
Suyanto, Data Mining Untuk Klasifikasi dan Klasterisasi Data. Bandung: Informatika, 2017.
U. A. Nasron and M. Habibi, “Analysis of Marketplace Conversation Trends on Twitter Platform Using K-Means,” Compiler, vol. 9, no. 1, pp. 51–62, May 2020, doi: 10.28989/compiler.v9i1.579.
DOI: https://doi.org/10.31315/telematika.v18i2.5067
DOI (PDF): https://doi.org/10.31315/telematika.v18i2.5067.g3840
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika