Automated Website Monitoring System Using Web Scraping and Raspberry Pi
Abstract
Purpose: Create a system to monitor website availability automatically using web scraping and raspberry pi
Design/methodology/approach: This system successfully checks website availability using various ISPs with an accuracy of more than 90%.
Findings/result: This system successfully checks website availability using various ISPs with an accuracy of more than 90%.
Originality/value/state of the art: The contribution of this research is to create systems and agents that collaborate automatically to check website availability.
Tujuan: Membuat sebuah sistem untuk melakukan pemantauan ketersediaan situs web secara otomatis menggunakan web scraping dan raspberyy pi
Perancangan/metode/pendekatan: Pada penelitian ini dibuat sebuah sistem utama sebagai pusat data dan beberapa agent menggunakan raspberry pi. Sistem utama dibangun menggunakan codeigniter dan web scraping di raspberry pi dilakukan menggunakan node js serta REST API untuk komunikasi antara agent dan sistem utama.
Hasil: Sistem ini berhasil melakukan pengecekan ketersediaan situs web menggunakan berbagai ISP dengan keakuratan lebih dari 90%.
Keaslian/ state of the art: Kontribusi penelitian ini adalah membuat sistem dan agen yang berkolaborasi secara otomatis untuk mengecek ketersediaan situs web.
Keywords
Full Text:
PDFReferences
M. Manzoor, W. Hussain, A. Ahmed, and M. J. Iqbal, “The importance of Higher Education Website and its Usability,” Int. J. Basic Appl. Sci., vol. 1, no. 2, pp. 150–163, Apr. 2012, doi: 10.14419/ijbas.v1i2.73.
N. Kesswani and S. Kumar, “Accessibility analysis of websites of educational institutions,” Perspect. Sci., vol. 8, pp. 210–212, Sep. 2016, doi: 10.1016/j.pisc.2016.04.031.
A. N. Abadi and N. A. Rakhmawati, “Rancang Bangun Perangkat Lunak Benchmarking Sosial Media Pemerintah Daerah Indonesia,” J. Tek. ITS, vol. 6, no. 2, pp. A302-307, Sep. 2017, doi: 10.12962/j23373539.v6i2.23260.
I. A. Ahmad Sabri, M. Man, W. A. W. Abu Bakar, and A. N. Mohd Rose, “Web Data Extraction Approach for Deep Web using WEIDJ,” Procedia Comput. Sci., vol. 163, pp. 417–426, 2019, doi: 10.1016/j.procs.2019.12.124.
A. Josi and L. A. Abdillah, “PENERAPAN TEKNIK WEB SCRAPING PADA MESIN PENCARI ARTIKEL ILMIAH,” p. 6.
V. Mitra and H. Sujaini, “Rancang Bangun Aplikasi Web Scraping untuk Korpus Paralel Indonesia - Inggris dengan Metode HTML DOM,” vol. 5, no. 1, p. 6, 2017.
L. P. Kaspa, V. N. S. S. Akella, Z. Chen, and Y. Shi, “Towards Extended Data Mining: An Examination of Technical Aspects,” Procedia Comput. Sci., vol. 139, pp. 49–55, 2018, doi: 10.1016/j.procs.2018.10.216.
L. C. Dewi, Meiliana, and A. Chandra, “Social Media Web Scraping using Social Media Developers API and Regex,” Procedia Comput. Sci., vol. 157, pp. 444–449, 2019, doi: 10.1016/j.procs.2019.08.237.
A. O. Agbeyangi, O. A. Alashiri, and A. E. Otunuga, “Automatic Identification of Vehicle Plate Number using Raspberry Pi,” in 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), Ayobo, Ipaja, Lagos, Nigeria, Mar. 2020, pp. 1–4. doi: 10.1109/ICMCECS47690.2020.246983.
Noorinder, J. Singh, and E. Sidhu, “Raspberry pi based smart fire management system employing sensor based automatic water sprinkler,” in 2017 International Conference on Power and Embedded Drive Control (ICPEDC), Chennai, India, Mar. 2017, pp. 102–106. doi: 10.1109/ICPEDC.2017.8081068.
C. N. Cabaccan, F. R. G. Cruz, and I. C. Agulto, “Wireless sensor network for agricultural environment using raspberry pi based sensor nodes,” in 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, Dec. 2017, pp. 1–5. doi: 10.1109/HNICEM.2017.8269427.
A. Sreejithlal, M. N. Syam, T. M. Letha, K. P. M. Madhusoodanan, and A. Shooja, “Pressure Sensor Test System Using Raspberry Pi,” in 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Thiruvananthapuram, India, Dec. 2018, pp. 182–185. doi: 10.1109/RAICS.2018.8635050.
H. Bensag, M. Youssfi, and O. Bouattane, “Embedded agent for medical image segmentation,” in 2015 27th International Conference on Microelectronics (ICM), Casablanca, Morocco, Dec. 2015, pp. 190–193. doi: 10.1109/ICM.2015.7438020.
C. G. Toader, “Multi-Agent Based E-Health System,” in 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, May 2017, pp. 696–700. doi: 10.1109/CSCS.2017.107.
N. A. Rakhmawati, V. Ferlyando, F. Samopa, and H. M. Astuti, “A performance evaluation for assessing registered websites,” Procedia Comput. Sci., vol. 124, pp. 714–720, 2017, doi: 10.1016/j.procs.2017.12.209.
U. Baskaran and K. Ramanujam, “Automated scraping of structured data records from health discussion forums using semantic analysis,” Inform. Med. Unlocked, vol. 10, pp. 149–158, 2018, doi: 10.1016/j.imu.2018.01.003.
V. Draxl, “Web Scraping Data Extraction from websites,” p. 38.
DOI: https://doi.org/10.31315/telematika.v18i2.5506
DOI (PDF): https://doi.org/10.31315/telematika.v18i2.5506.g3834
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika