Development of a Group Decision Support System with the Multi-Stage Multi-Attribute Group Decision Making (MS-MAGDM) Method on the Intelligent Warehouse Management System
Abstract
Purpose: to find a solution with MS-DAGDM for the problem of different criteria used by decision maker at each stage.
Design/methodology/approach: This research was conducted using literature review with a study of the theory of decision-making methods, group decisions, suplier selection processes, and factors that influence decisions in the context of warehousing and MS-MAGDM to solve the problems.
Findings/result: This research find that GDSS prototypes which have four methods in making decisions. First, Analytical Hierarchy Process for weighting the division head level. Second, TOPSIS for divison head level decisions. Third, Hybrid Weight Averaging (HWA) manager level. Fourth, Time Weight Averaging (TWA) for manager level decisions.
Originality/value/state of the art:
The decision-making model of the GDSS system in this study combines four methods at each level of management. The section head level uses AHP for the level weighting and TOPSIS for decision making. Level managers use Hybrid Weight Averaging (HWA) weighting and Time Weight Averaging (TWA) for decisions. The combination of these methods is carried out using a Poisson distribution, for HWA and TWA operators to combine individual decisions into group decisions.
Tujuan: Fokus penelitian ini adalah mencari solusi dengan MS-MAGDM untuk permasalahan perbedaan kriteria yang dipergunakan pembuat keputusan dalam setiap stage.
Perancangan/metode/pendekatan: Metode yang digunakan yaitu kajian kepustakaan dengan kajian terhadap teori metode pembuatan keputusan, keputusan kelompok, proses pemilihan supplier, dan faktor yang berpengaruh pada keputusan dalam konteks pergudangan serta MS-MAGDM untuk menyelesaikan permasalahan tersebut.
Hasil: Hasil penelitian ini berupa purwarupa GDSS yang memiliki 4 metode dalam pembuatan keputusan yaitu Analytical Hierarchi Process (AHP) untuk pembobotan level kepala bagian, TOPSIS untuk keputusan level kepala bagian, Hybrid Weight Averaging (HWA) pembobotan pada level manager dan Time Weight Averaging (TWA) untuk keputusan level manager
Keaslian/ state of the art:
Model pengambilan keputusan sistem GDSS penelitian ini menggabungkan 4 metode pada setiap tingkatan manajemen. Level kepala bagian menggunakan AHP untuk pembobotan level dan TOPSIS untuk pembuatan keputusan. Level manager menggunakan Hybrid Weight Averaging (HWA) pembobotan dan Time Weight Averaging (TWA) untuk keputusan. Penggabungan metode dilakukan menggunakan distribusi Poisson, untuk operator HWA dan TWA guna memadukan keputusan individu mejadi keputusan kelompok.
Keywords
Full Text:
PDFReferences
R. Pulungan, S. P. Nugroho, N. El Maidah, T. B. Atmojo, P. D. Hardo, and P. Pawenang, “Design of an Intelligent Warehouse Management System,” Inf. Syst. Int. Conf., pp. 263–268, 2013, doi: 10.1007/s11277-017-5199-7.
M. Tukai, A. George, P. Delamare, C. K. Toure, A. Tounkara, and A. Dembele, “Report on strengthening the warehouse management system for the pharmacie populaire du Mali,” no. April, pp. 1–35, 2016, [Online]. Available: www.siapsprogram.org.
Z. Vaezi, K. Shahgholian, and A. Shahraki, “A model for supplier selection based on fuzzy multi-criteria group decision making,” Eur. J. Sci. Res., vol. 63, no. 1, pp. 63–72, 2011, doi: 10.5897/ajbm11.955.
C. W. Corner, J. L. and Kirkwood, “Decision analysis applications in the operations research,” Oper. Res., vol. 39, no. 2, pp. 206–219, 1991.
S. L. Gebre, D. Cattrysse, and J. Van Orshoven, “Multi-criteria decision-making methods to address water allocation problems: A systematic review,” Water (Switzerland), vol. 13, no. 2, pp. 1–28, 2021, doi: 10.3390/w13020125.
H. Anysz, A. Nicał, Ž. Stević, M. Grzegorzewski, and K. Sikora, “Pareto optimal decisions in multi-criteria decision making explained with construction cost cases,” Symmetry (Basel)., vol. 13, no. 1, pp. 1–25, 2021, doi: 10.3390/sym13010046.
Z. Xu, “Approaches to multi-stage multi-attribute group decision making,” Int. J. Inf. Technol. Decis. Mak., vol. 10, no. 1, pp. 121–146, 2011, doi: 10.1142/S0219622011004257.
J. Chen, “SS symmetry for Monitoring the COM-Poisson Processes,” 2020.
G. Bohm and G. Zech, “Statistics of weighted Poisson events and its applications,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 748, no. 1, pp. 1–6, 2014, doi: 10.1016/j.nima.2014.02.021.
M. N. Mokhtarian, “A note on ‘extension of fuzzy TOPSIS method based on interval-valued fuzzy sets,’” Appl. Soft Comput. J., vol. 26, pp. 513–514, 2015, doi: 10.1016/j.asoc.2014.10.013.
V. H. Morales and J. A. Vargas, “Monitoring Aggregated Poisson Data for Processes with Time-Varying Sample Sizes,” Rev. Colomb. Estadística, vol. 40, no. 2, pp. 243–262, 2017, doi: 10.15446/rce.v40n2.59925.
M. Shirinfar and H. Haleh, “Supplier Selection and Evaluation by Fuzzy Multi- Criteria Decision Making Methodology,” Int. J. Ind. Eng. &Production Res., vol. 22, no. 4, pp. 271–280, 2011.
H. Garg, A. Keikha, and H. Mishmast Nehi, “Multiple-Attribute Decision-Making Problem Using TOPSIS and Choquet Integral with Hesitant Fuzzy Number Information,” Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/9874951.
C. Utomo, N. A. Rahman, and A. Idrus, “Multi-Person Decision for Sustainable Design on Ibs Floor System Selection,” J. Civ. Eng. Forum, vol. 21, no. 2, pp. 1227–1234, 2013, doi: 10.22146/jcef.18928.
J. Lu, G. Zhang, D. Ruan, and F. Wu, Multi-objective group decision-making: methods, software and applications. London: Imperial College Press, 2007.
S. Saghafian and S. R. Hejazi, “Multi-criteria group decision making using a modified fuzzy TOPSIS procedure,” Proc. - Int. Conf. Comput. Intell. Model. Control Autom. CIMCA 2005 Int. Conf. Intell. Agents, Web Technol. Internet, vol. 2, pp. 215–220, 2005, doi: 10.1109/cimca.2005.1631471.
F. E. Boran, “An integrated intuitionistic fuzzy multi criteria decision making method for facility location selection,” Math. Comput. Appl., vol. 16, no. 2, pp. 487–496, 2011, doi: 10.3390/mca16020487.
W. Hadikurniawati and K. Mustofa, “Multicriteria group decision making using fuzzy approach for evaluating criteria of electrician,” Int. J. Electr. Comput. Eng., vol. 6, no. 5, pp. 2462–2469, 2016, doi: 10.11591/ijece.v6i5.10946.
H. K. Bhargava, S. Sridhar, and C. Herrick, “Beyond spreadsheets: Tools for building decision support systems,” Computer (Long. Beach. Calif)., vol. 32, no. 3, pp. 31–39, 1999, doi: 10.1109/2.751326.
E. J. Castellano and L. Martínez, “A web-decision support system based on collaborative filtering for academic orientation. Case study of the spanish secondary school,” J. Univers. Comput. Sci., vol. 15, no. 14, pp. 2786–2807, 2009.
L. S. Chen and C. H. Cheng, “Selecting IS personnel use fuzzy GDSS based on metric distance method,” Eur. J. Oper. Res., vol. 160, no. 3 SPEC. ISS., pp. 803–820, 2005, doi: 10.1016/j.ejor.2003.07.003.
N. Zhang, “Method for aggregating correlated interval grey linguistic variables and its application to decision making,” Technol. Econ. Dev. Econ., vol. 19, no. 2, pp. 189–202, 2013, doi: 10.3846/20294913.2012.763071.
W. R. W. Mohd and L. Abdullah, “Aggregation methods in group decision making: A decade survey,” Inform., vol. 41, no. 1, pp. 71–86, 2017.
K. Gompf, M. Traverso, and J. Hetterich, “Using analytical hierarchy process (AHP) to introduce weights to social life cycle assessment of mobility services,” Sustain., vol. 13, no. 3, pp. 1–10, 2021, doi: 10.3390/su13031258.
T. A.- Pachemska, M. Lapevski, and R. Timovski, “Analytical Hierarchical Process (AHP) method application in the process of selection and evaluation,” Proceedings. Gabrovo Internatinal Sci. Conf. “UNITECH”. 21-22 Novemb. 2014, no. November, pp. 373–380, 2014, [Online]. Available: https://www.researchgate.net/publication/276985609_ANALYTICAL_HIERARCHICAL_PROCESS_AHP_METHOD_APPLICATION_IN_THE_PROCESS_OF_SELECTION_AND_EVALUATION.
R. W. Saaty, “The analytic hierarchy process-what it is and how it is used,” Math. Model., vol. 9, no. 3–5, pp. 161–176, 1987, doi: 10.1016/0270-0255(87)90473-8.
M. Brunneli, Introduction to the Analytic Hierarchy Process. 2015.
V. Balioti, C. Tzimopoulos, and C. Evangelides, “Multi-Criteria Decision Making Using TOPSIS Method Under Fuzzy Environment. Application in Spillway Selection,” Proceedings, vol. 2, no. 11, p. 637, 2018, doi: 10.3390/proceedings2110637.
E. Roszkowska, “Multi-Criteria Decision Making Models By Applying the Topsis Method To Crisp and Interval Data,” Mult. Criteria Decis. Mak., vol. 6, no. Mcdm, pp. 200–230, 2011.
A. Kobryń and J. Prystrom, “A Data Pre-Processing Model for the Topsis Method,” Folia Oeconomica Stetin., vol. 16, no. 2, pp. 219–235, 2016, doi: 10.1515/foli-2016-0036.
Z. Pavić and V. Novoselac, “Notes on TOPSIS Method,” Int. J. Res. Eng. Sci., vol. 1, no. 2, pp. 5–12, 2013, [Online]. Available: https://www.researchgate.net/publication/285886027_Notes_on_TOPSIS_Method%0Awww.ijres.org.
R. Rahim et al., “TOPSIS Method Application for Decision Support System in Internal Control for Selecting Best Employees,” J. Phys. Conf. Ser., vol. 1028, no. 1, 2018, doi: 10.1088/1742-6596/1028/1/012052.
A. Zadeh Sarraf, A. Mohaghar, and H. Bazargani, “Developing TOPSIS method using statistical normalization for selecting knowledge management strategies,” J. Ind. Eng. Manag., vol. 6, no. 4, pp. 860–875, 2013, doi: 10.3926/jiem.573.
DOI: https://doi.org/10.31315/telematika.v18i2.5507
DOI (PDF): https://doi.org/10.31315/telematika.v18i2.5507.g3835
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika