Autoregressive Integrated Moving Average (ARIMA) Models For Forecasting Sales Of Jeans Products

Jenny Meilila Azani Cahya Permata, Muhammad Habibi

Abstract


Purpose: To be able to compete with other companies, it is necessary to estimate and forecast jeans products that will be ordered according to consumer demand every month, so that there is no excess inventory and product shortage. If there is a shortage of goods, the consumer will be disappointed with the seller, and vice versa if the goods are overstocked, the quality will continue to decline to the detriment of the seller and the buyer, resulting in a shortage of materials.

Methodology: To overcome the problem of selling jeans products, the ARIMA method is suitable to overcome the problem of forecasting the stock of jeans sales. ARIMA model is a model that completely ignores the independent variables in making forecasts. ARIMA uses past and present values of the dependent variable to produce accurate short-term forecasting.

Results: The built forecasting has a MAPE accuracy rate of 17.05% so it can be said that predicting has good results according to the criteria. Forecasting results in the following year show that sales tend to increase from the previous year.

Originality: This research was conducted using sales data of jeans products at company XYZ and using the ARIMA method which previous researchers have never done.

Keywords


Sales, Forecasting; Autoregressive Integrated Moving Average; Jeans

Full Text:

PDF

References


D. Doctor, “The History Of Denim Jeans,” The Denim Doctor. [Online]. Available: https://thedenimdoctor.co.uk/history-of-denim-jeans/. [Accessed: 15-Sep-2022].

C. Male Amanda, “Penjualan Denim Anjlok, Warga Beralih ke Busana Nyaman saat Pandemik | Dream.co.id,” Dream Muslim Lifestyle, 22-Sep-2020. [Online]. Available: https://www.dream.co.id/dinar/penjualan-denim-menurun-tajam-selama-pandemi-200922z.html. [Accessed: 15-Sep-2022].

A. Indrani, “Penjualan Jeans Levi’s Turun 62%, 700 Pekerjaan Bakal Dipangkas,” Detik Finance, 08-Jul-2020. [Online]. Available: https://finance.detik.com/berita-ekonomi-bisnis/d-5084359/penjualan-jeans-levis-turun-62-700-pekerjaan-bakal-dipangkas. [Accessed: 15-Sep-2022].

N. Nurmaulidar, A. Rusyana, and R. Maqfirah, “Penggunaan Metode Exponential Smoothing untuk Meramalkan Persediaan Beras pada Bulog Divre Aceh,” in SEMIRATA Bidang MIPA, 2016.

F. Ahmad, “Penentuan Metode Peramalan Pada Produksi Part New Granada Bowl ST Di PT. X,” J. Integr. Sist. Ind., vol. 7, no. 1, pp. 31–39, 2020.

M. Dadhich, M. S. Pahwa, V. Jain, and R. Doshi, “Predictive Models for Stock Market Index Using Stochastic Time Series ARIMA Modeling in Emerging Economy,” Lect. Notes Mech. Eng., pp. 281–290, 2021.

C. B. Aditya Satrio, W. Darmawan, B. U. Nadia, and N. Hanafiah, “Time series analysis and forecasting of coronavirus disease in Indonesia using ARIMA model and PROPHET,” Procedia Comput. Sci., vol. 179, pp. 524–532, Jan. 2021.

I. Aksan and K. Nurfadilah, “Aplikasi Metode Arima Box-Jenkins Untuk Meramalkan Penggunaan Harian Data Seluler,” J. Math. Theory Appl., vol. 2, no. 1, pp. 5–10, 2020.

S. Rahayu, P. Astutik, and P. Hendikawati, “Peramalan Inflasi di Demak Menggunakan Metode ARIMA Berbantuan Software R dan MINITAB,” Prism. Pros. Semin. Nas. Mat., vol. 1, pp. 745–754, 2018.

L. R. de Araújo Morais and G. S. da Silva Gomes, “Forecasting daily Covid-19 cases in the world with a hybrid ARIMA and neural network model,” Appl. Soft Comput., vol. 126, p. 109315, Sep. 2022.

H. Alabdulrazzaq, M. N. Alenezi, Y. Rawajfih, B. A. Alghannam, A. A. Al-Hassan, and F. S. Al-Anzi, “On the accuracy of ARIMA based prediction of COVID-19 spread,” Results Phys., vol. 27, p. 104509, Aug. 2021.

D. Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, and M. Ciccozzi, “Application of the ARIMA model on the COVID-2019 epidemic dataset,” Data Br., vol. 29, p. 105340, Apr. 2020.

M. Habibi, M. R. Ma’arif, and D. Subekti, “The Development of Social Media Intelligence System for Citizen Opinion and Perception Analysis over Government Policy,” Telemat. J. Inform. dan Teknol. Inf., vol. 19, no. 1, pp. 31–46, Feb. 2022.

U. A. Nasron and M. Habibi, “Analysis of Marketplace Conversation Trends on Twitter Platform Using K-Means,” Compiler, vol. 9, no. 1, pp. 51–61, 2020.

A. S. Ahmar et al., “Implementation of the ARIMA(p,d,q) method to forecasting CPI Data using forecast package in R Software,” J. Phys. Conf. Ser., vol. 1028, no. 1, p. 012189, Jun. 2018.

D. Delmail, P. Labrousse, and M. Botineau, “The most powerful multivariate normality test for plant genomics and dynamics data sets,” Ecol. Inform., vol. 6, no. 2, pp. 125–126, Mar. 2011.

S. Budiwanto, “Metode Statistika: Untuk Mengolah Data Keolahragaan,” Metod. Stat., pp. 1–233, 2017.

H. Liu, C. Chen, Y. Li, Z. Duan, and Y. Li, “Metro load prediction and intelligent ventilation control,” Smart Metro Stn. Syst., pp. 269–292, Jan. 2022.

S. Prayudani, A. Hizriadi, Y. Y. Lase, Y. Fatmi, and Al-Khowarizmi, “Analysis Accuracy of Forecasting Measurement Technique on Random K-Nearest Neighbor (RKNN) Using MAPE and MSE,” J. Phys. Conf. Ser., vol. 1361, no. 1, 2019.

J. P. Pinder, “Forecasting,” Introd. to Bus. Anal. using Simul., pp. 371–418, Jan. 2017.

J. J. Montaño Moreno, A. Palmer Pol, A. Sesé Abad, and B. Cajal Blasco, “Using the R-MAPE index as a resistant measure of forecast accuracy,” Psicothema, vol. 25, no. 4, pp. 500–506, 2013.




DOI: https://doi.org/10.31315/telematika.v20i1.7868

DOI (PDF): https://doi.org/10.31315/telematika.v20i1.7868.g5398

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika