Human Skin Disease Detection using Convolutional Neural Network Method with Hyperparameter Tuning to Determine the Best Parameter Combination

Riki Martua Aritonang, Mangaras Yanu Florestiyanto, Bambang Yuwono

Abstract


Purpose: Obtaining the best hyperparameter combination for optimization of the Convolutional Neural Network method, for classifying skin diseases.

Design/methodology/approach: Using the CNN method with hyperparameter tuning in determining the best hyperparameter combination. System development is performed with the Python programming language.

Findings/result: The best combination of hyperparameter tuning results is RMSprop optimizer, APL dropout value is 0.05, dropout is 0.5 , dense layer is 64, and produces an accuracy of 97,81%.

Originality/value/state of the art: This study has differences in terms of the types of skin diseases classified, the architecture of the CNN model, the hyperparameters tested and the combination results obtained compared to previous studies.

Keywords


Hyperparameter Tuning; Skin Disease; CNN

Full Text:

PDF

References


Hanin, M. A., Patmasari, R. and Nur, R. Y. (2021) ‘Sistem Klasifikasi Penyakit Kulit Menggunakan Convolutional Neural Network ( CNN )’, 8(1), pp. 273–281.

Permadi, O. (2021) Profil Kesehatan Indonesia 2020, IT - Information Technology. doi: 10.1524/itit.2006.48.1.6.

Prajarini, D. et al. (2016) ‘Perbandingan Algoritma Klasifikasi Data Mining Untuk Prediksi Penyakit Kulit’, Informatics Journal, 1(3), p. 137.

Hafsah, I. S. and Andono, P. N. (2015) ‘Deteksi Otomatis Penyakit Kulit Menggunakan Algoritma Naive Bayes’, Jurnal Kesehatan, (5), pp. 1–6.

Leelavathy S, Jaichandran R, Shobana R, Vasudevan, S. S. P. and N. (2020) ‘Skin Disease Detection Using Computer Vision and Machine Learning Technique’, European Journal of Molecular & Clinical Medicine, 7(4), pp. 2999–3003.

Nurkhasanah, N. and Murinto, M. (2022) ‘Klasifikasi Penyakit Kulit Wajah Menggunakan Metode Convolutional Neural Network’, Sainteks, 18(2), p. 183. doi: 10.30595/sainteks.v18i2.13188.

Kurniawan, I. (2019) ‘Implementasi Convolutional Neural Network dalam Mengidentifikasi Penyakit Kulit’, Repositori Institusi USU.

Irfan, D. et al. (2022) ‘Perbandingan Optimasi Sgd, Adadelta, Dan Adam Dalam Klasifikasi Hydrangea Menggunakan CNN’, Journal of Science and Social Research, 4307(June), pp. 244–253.

Suartika, I Wayan, Wijaya Arya Yudhi, S. R. (2016) ‘Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) Pada Caltech 101’, Jurnal Teknik ITS, 5(1), p. 76.

Masykur, F., Setyawan, M. B. and Winangun, K. (2022) ‘Epoch Optimization on Rice Leaf Image Classification Using Convolutional Neural Network (CNN) MobileNet’, CESS (Journal of Computer Engineering, System and Science), 7(2), p. 581. doi: 10.24114/cess.v7i2.37336.

Minarno, A. E. et al. (2021) ‘Convolutional Neural Network with Hyperparameter Tuning for Brain Tumor Classification’, Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control, 4. doi: 10.22219/kinetik.v6i2.1219.

Wu, J. et al. (2019) ‘Hyperparameter optimization for machine learning models based on Bayesian optimization’, Journal of Electronic Science and Technology, 17(1), pp. 26–40. doi: 10.11989/JEST.1674-862X.80904120.

Aszemi, N. M. and Dominic, P. D. D. (2019) ‘Hyperparameter optimization in convolutional neural network using genetic algorithms’, International Journal of Advanced Computer Science and Applications, 10(6), pp. 269–278. doi: 10.14569/ijacsa.2019.0100638.

Hong, C. S. and Oh, T. G. (2021) ‘TPR-TNR plot for confusion matrix’, Communications for Statistical Applications and Methods, 28(2), pp. 161–169. doi: 10.29220/CSAM.2021.28.2.161

Polat, K. and Onur Koc, K. (2020) ‘Detection of Skin Diseases from Dermoscopy Image Using the combination of Convolutional Neural Network and One-versus-All’, Journal of Artificial Intelligence and Systems, 2(1), pp. 80–97. doi: 10.33969/ais.2020.21006.

Zelinsky, A. (2009) Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf], IEEE Robotics & Automation Magazine. doi: 10.1109/mra.2009.933612.




DOI: https://doi.org/10.31315/telematika.v20i2.9161

DOI (PDF): https://doi.org/10.31315/telematika.v20i2.9161.g5666

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright of :
TELEMATIKA: Jurnal Informatika dan Teknologi Informasi
ISSN 1829-667X (print); ISSN 2460-9021 (online)


Dipublikasi oleh
Jurusan Teknik Informatika, UPN Veteran Yogyakarta
Jl. Babarsari 2 Yogyakarta 55281 (Kampus Unit II)
Telp: +62 274 485786
email: jurnaltelematika@upnyk.ac.id

 

Jurnal Telematika sudah diindeks oleh beberapa lembaga berikut:
 

 

 

 

 

Status Kunjungan Jurnal Telematika