Input Variable Selection for Oil Palm Plantation Productivity Prediction Model
Abstract
Purpose: This study aims to implement and improve a wrapper-type Input Variable Selection (IVS) to the prediction model of oil palm production utilizing oil palm expert knowledge criteria and distance-based data sensitivity criteria in order to measure cost-saving in laboratory leaf and soil sample testing.
Methodology: The proposed approach consists of IVS process, searching the best prediction model based on the selected variables, and analyzing the cost-saving in laboratory leaf and soil sample testing.
Findings/result: The proposed method managed to effectively choose 7 from 19 variables and achieve 81.47% saving from total laboratory sample testing cost.
Value: This result has the potential to help small stakeholder oil palm planter to reduce the cost of laboratory testing without losing important information from their plantation.
Keywords
Full Text:
PDFReferences
Ditjenbun, “Statistik Perkebunan Unggulan Nasional 2019-2021,” Direktorat Jendral Perkeb. Kementeri. Pertan. Republik Indones., pp. 1–88, 2021, [Online]. Available: https://ditjenbun.pertanian.go.id/template/uploads/2021/04/BUKU-STATISTIK-PERKEBUNAN-2019-2021-OK.pdf.
A. Harjoko and U. G. Mada, “Pemrosesan Citra Digital untuk Klasifikasi Mutu Buah Pisang Menggunakan Jaringan Saraf Tiruan,” IJEIS (Indonesian J. Electron. Instrum. Syst., vol. 4, no. 1, pp. 57–68, Apr. 2014, doi: 10.22146/IJEIS.4222.
H. Herman and A. Harjoko, “Pengenalan Spesies Gulma Berdasarkan Bentuk dan Tekstur Daun Menggunakan Jaringan Syaraf Tiruan,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 9, no. 2, pp. 207–218, Jul. 2015, doi: 10.22146/IJCCS.7549.
Hermantoro, A. P. Suryotomo, A. I. Uktoro, and R. A. Renjani, “Unmanned Aerial Vehicle Application for Plantation Mapping and Automatic Oil Palm Trees Counting on Oil Palm Plantation Management,” in International Conference on the Role of Agricultural Engineering for Sustainable Agriculture Production, 2016, no. December, pp. 47–50.
H. Hermantoro, “PEMODELAN DAN SIMULASI PRODUKTIVITAS PERKEBUNAN KELAPA SAWIT BERDASARKAN KUALITAS LAHAN DAN IKLIM MENGGUNAKAN JARINGAN SYARAF TIRUAN MODELING AND SIMULATION OF PALM OIL PLANTATION PRODUCTIVITY BASED ON LAND QUALITY AND CLIMATE USING ...,” Agromet, vol. 23, no. 1, p. 45, Jun. 2009, doi: 10.29244/j.agromet.23.1.45-51.
Z. Ismail and A. Khamis, “Neural Network in Modeling Malaysian Oil Palm Yield,” Am. J. Appl. Sci., vol. 8, no. 8, pp. 796–803, 2011.
Y. Y. Hilal, W. Wan Ishak, A. Yahya, and Z. H. Asha’ari, “An Artificial Neural Network with Stepwise Method for Modeling and Simulation of Oil Palm Productivity Based on Various Parameters in Sarawak,” Res. J. Appl. Sci. Eng. Technol., vol. 13, no. 9, pp. 730–740, Nov. 2016, doi: 10.19026/RJASET.13.3347.
N. D. Kartika, I. W. Astika, and E. Santosa, “Oil Palm Yield Forecasting Based on Weather Variables Using Artificial Neural Network Sustainable in Tropical Crop Production View project MIT Thesis View project NADIA DWI KARTIKA Oil Palm Yield Forecasting Based on Weather Variables Using Artificial Neural Network,” Indones. J. Electr. Eng. Comput. Sci., vol. 3, no. 3, pp. 626–633, 2016, doi: 10.11591/ijeecs.v3.i2.pp626-633.
S. R. Diana and G. Dharma, “Estimation the Amount of Oil Palm Production Using Artificial Neural Network and NDVI SPOT-6 Imagery,” 2019. Accessed: May 30, 2021. [Online]. Available: www.ijisrt.com.
R. Chapman et al., “Using Bayesian networks to predict future yield functions with data from commercial oil palm plantations: A proof of concept analysis,” Comput. Electron. Agric., vol. 151, pp. 338–348, Aug. 2018, doi: 10.1016/j.compag.2018.06.006.
T. Chen, C. Zhang, X. Chen, and L. Li, “An Input Variable Selection Method for the Artificial Neural Network of Shear Stiffness of Worsted Fabrics,” Stat. Anal. Data Min. ASA Data Sci. J., vol. 1, no. 5, pp. 287–295, Apr. 2009, doi: 10.1002/SAM.10020.
R. A. Collazo, L. A. M. Pessôa, L. Bahiense, B. D. B. Pereira, A. F. Dos Reis, and N. S. E Silva, “A COMPARATIVE STUDY BETWEEN ARTIFICIAL NEURAL NETWORK AND SUPPORT VECTOR MACHINE FOR ACUTE CORONARY SYNDROME PROGNOSIS,” Pesqui. Operacional, vol. 36, no. 2, pp. 321–343, May 2016, doi: 10.1590/0101-7438.2016.036.02.0321.
S. Galelli, G. B. Humphrey, H. R. Maier, A. Castelletti, G. C. Dandy, and M. S. Gibbs, “An evaluation framework for input variable selection algorithms for environmental data-driven models,” Environ. Model. Softw., vol. 62, pp. 33–51, Dec. 2014, doi: 10.1016/J.ENVSOFT.2014.08.015.
A. Cutler, D. R. Cutler, and J. R. Stevens, “Random Forests,” Ensemble Mach. Learn., pp. 157–175, 2012, doi: 10.1007/978-1-4419-9326-7_5.
D. Vigneswari, N. K. Kumar, V. Ganesh Raj, A. Gugan, and S. R. Vikash, “Machine Learning Tree Classifiers in Predicting Diabetes Mellitus,” in 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, Mar. 2019, pp. 84–87, doi: 10.1109/ICACCS.2019.8728388.
Y. Liu, Y. Wang, and J. Zhang, “New machine learning algorithm: Random forest,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 7473 LNCS, pp. 246–252, 2012, doi: 10.1007/978-3-642-34062-8_32/COVER.
DOI: https://doi.org/10.31315/telematika.v20i1.9674
DOI (PDF): https://doi.org/10.31315/telematika.v20i1.9674.g5617
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Status Kunjungan Jurnal Telematika