Effect of Temperature and N-Doping on the Distribution of Bamboo Waste Pyrolysis Products Using Quartz Tube Furnace

Ilham Mufandi, Muhammad Nur Kholis, Mahmudah Hamawi, Much Taufik Ardani, Hafidha Ayu Kusuma

Abstract


This study investigates the effect of temperature and nitrogen doping (N-Doping) on the pyrolysis of bamboo waste to optimize the distribution of biochar, bio-oil, and gas products. Bamboo waste as raw material was applied to pyrolysis in a quartz tube furnace reactor at temperatures of 300°C, 400°C, 500°C, and 600°C under two atmospheric conditions: pyrolysis with nitrogen (PN) and pyrolysis without nitrogen (PWN). Results reveal that temperature significantly influences product distribution, with bio-oil yield peaking at 500°C (52% in PN) and decreasing at higher temperatures due to secondary cracking. Nitrogen doping enhances bio-oil production by preventing oxidation and reducing secondary reactions, leading to a bio-oil yield increase from 16.52% in PWN to 55.32% in PN at 500°C. Conversely, PWN conditions resulted in higher biochar yield due to partial oxidation. Gas yield increased at elevated temperatures in both conditions, attributed to thermal cracking and reformation processes. These findings emphasize the importance of controlled temperature and atmospheric conditions in maximizing the efficiency and product quality of bamboo waste pyrolysis. The results provide valuable insights into sustainable biomass conversion strategies, contributing to renewable energy development and bamboo waste valorization.

Keywords


Bamboo Waste; Biochar Biomass; N-Doping; Pyrolysis

Full Text:

PDF

References


A Aladin, B Modding, T. S. and F. C. D. (2020). Effect of nitrogen gas flowing continuously into the pyrolysis reactor for simultaneous production of charcoal and liquid smoke. The 2-Nd International Seminar on Science and Technology (ISST-2), 1–5. https://doi.org/10.1088/1742-6596/1763/1/012020

Aini, N., Mufandi, I., Jamilatun, S., & Rahayu, A. (2023). Exploring Cacao Husk Waste – Surface Modification, Characterization, and its Potential for Removing Phosphate and Nitrate Ions. Journal of Ecological Engineering, 24(12), 282–292. https://doi.org/10.12911/22998993/17400

Chaturvedi, K., Singhwane, A., Dhangar, M., Mili, M., Gorhae, N., Naik, A., Prashant, N., Srivastava, A. K., & Verma, S. (2024). Bamboo for producing charcoal and biochar for versatile applications. Biomass Conversion and Biorefinery, 14(14), 15159–15185. https://doi.org/10.1007/s13399-022-03715-3

Chaudhary, U., Malik, S., Rana, V., & Joshi, G. (2024). Bamboo in the pulp, paper and allied industries. Advances in Bamboo Science, 7, 100069. https://doi.org/https://doi.org/10.1016/j.bamboo.2024.100069

Chen, W., Yang, H., Chen, Y., Chen, X., Fang, Y., & Chen, H. (2016). Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. Journal of Analytical and Applied Pyrolysis, 120, 186–193. https://doi.org/https://doi.org/10.1016/j.jaap.2016.05.004

Deng, W., Zhang, Y., Hu, M., Wang, R., & Su, Y. (2025). Optimization of nitrogen-doped sludge char preparation and mechanism study for catalytic oxidation of NO at room temperature. Journal of Environmental Sciences, 150, 503–514. https://doi.org/https://doi.org/10.1016/j.jes.2023.11.025

Gautam, N., & Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy, 190, 116434. https://doi.org/https://doi.org/10.1016/j.energy.2019.116434

Hu, J., Yan, Y., Evrendilek, F., Buyukada, M., & Liu, J. (2019). Combustion behaviors of three bamboo residues: Gas emission, kinetic, reaction mechanism and optimization patterns. Journal of Cleaner Production, 235, 549–561. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.324

Jamilatun, S., Aktawan, A., Budiman, A., & Mufandi, I. (2022). Thermogravimetric analysis kinetic study of Spirulina platensis residue pyrolysis. IOP Conference Series: Earth and Environmental Science, 963(1). https://doi.org/10.1088/1755-1315/963/1/012010

Jamilatun, Siti, Budhijanto, Rochmadi, & Budiman, A. (2017). Thermal decomposition and kinetic studies of pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Development, 6(3), 193–201. https://doi.org/10.14710/ijred.6.3.193-201

Jamilatun, Siti, Mufandi, I., Evitasari, R. T., & Budiman, A. (2020). Effects of temperature and catalysts on the yield of bio-oil during the pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Research, 10(2), 678–686.

Jamilatun, Siti, Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566

Jerzak, W., Acha, E., & Li, B. (2024). Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis. In Energies (Vol. 17, Issue 20). https://doi.org/10.3390/en17205082

Kasera, N., Kolar, P., & Hall, S. G. (2022). Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: a review. Biochar, 4(1), 17. https://doi.org/10.1007/s42773-022-00145-2

Kryshtopa, S., Kryshtopa, L., Panchuk, M., Smigins, R., & Dolishnii, B. (2021). Composition and energy value research of pyrolise gases. IOP Conference Series: Earth and Environmental Science, 628(1), 12008. https://doi.org/10.1088/1755-1315/628/1/012008

Liang, Z., Neményi, A., Kovács, G. P., & Gyuricza, C. (2023). Potential use of bamboo resources in energy value-added conversion technology and energy systems. GCB Bioenergy, 15(8), 936–953. https://doi.org/https://doi.org/10.1111/gcbb.13072

Linh, H. C. T. (2024). Application of Bamboo Materials in the Field of Interior Architecture Design - Modern Landscape. In C. Ha-Minh, C. H. Pham, H. T. H. Vu, & D. V. K. Huynh (Eds.), 7th International Conference on Geotechnics, Civil Engineering and Structures, CIGOS 2024, 4-5 April, Ho Chi Minh City, Vietnam (pp. 132–140). Springer Nature Singapore.

Mufandi, I., Suntivarakorn, R., Treedet, W., & Singbua, P. (2023). Analisis Termogravimetri dan Dekomposisi Termal pada Produksi Bio-Oil dari Daun Tebu Menggunakan Proses Pirolisis Cepat. Eksergi, 20(2), 82. https://doi.org/10.31315/e.v20i2.9849

Mufandi, I., Treedet, W., Singbua, P., & Suntivarakorn, R. (2020). Efficiency of Bio - oil Production from Napier Grass Using Circulating Fluidized Bed Reactor with Bio - oil Scrubber. KKU Research Journal, 20(December), 94–107.

Nan, H., Xiao, Z., Zhao, L., Yang, F., Xu, H., Xu, X., & Qiu, H. (2020). Nitrogen Transformation during Pyrolysis of Various N-Containing Biowastes with Participation of Mineral Calcium. ACS Sustainable Chemistry & Engineering, 8(32), 12197–12207. https://doi.org/10.1021/acssuschemeng.0c03773

Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064. https://doi.org/https://doi.org/10.1016/j.rser.2014.10.074

Rashmi Sarmah, R., & Neog, D. (2024). Bamboo as a Potential Eco-Friendly Composite – A Review. Journal of Physics: Conference Series, 2818(1), 12031. https://doi.org/10.1088/1742-6596/2818/1/012031

Somerville, M., & Deev, A. (2020). The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood. Renewable Energy, 151, 419–425. https://doi.org/10.1016/j.renene.2019.11.036

Tong, W., Cai, Z., Liu, Q., Ren, S., & Kong, M. (2020). Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics. Energy, 211, 118736. https://doi.org/10.1016/j.energy.2020.118736

Treedet, W., Suntivarakorn, R., Mufandi, I., & Singbua, P. (2020). Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels. International Energy Journal, 20(2), 155–168.

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/https://doi.org/10.1016/j.rser.2015.10.122

Vamkuka, D. (2012). Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview. International Journal of Energy Research, 33(4), 23–40. https://doi.org/10.1002/er

Vuppaladadiyam, A. K., Varsha Vuppaladadiyam, S. S., Sikarwar, V. S., Ahmad, E., Pant, K. K., S, M., Pandey, A., Bhattacharya, S., Sarmah, A., & Leu, S.-Y. (2023). A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges. Journal of the Energy Institute, 108, 101236. https://doi.org/https://doi.org/10.1016/j.joei.2023.101236

Wang, J., Minami, E., Asmadi, M., & Kawamoto, H. (2021). Thermal degradation of hemicellulose and cellulose in ball-milled cedar and beech wood. Journal of Wood Science, 67(1), 32. https://doi.org/10.1186/s10086-021-01962-y

Wang, N., Chang, Z.-Z., Xue, X.-M., Yu, J.-G., Shi, X.-X., Ma, L. Q., & Li, H.-B. (2017). Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Science of The Total Environment, 581–582, 689–696. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.12.181

Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/https://doi.org/10.1016/j.pecs.2017.05.004

Wang, Yan, Yin, R., & Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110, 375–381. https://doi.org/https://doi.org/10.1016/j.jaap.2014.10.006

Wang, Yurou, Guo, W., Chen, W., Xu, G., Zhu, G., Xie, G., Xu, L., Dong, C., Gao, S., Chen, Y., Yang, H., Chen, H., & Fang, Z. (2024). Co-production of porous N-doped biochar and hydrogen-rich gas production from simultaneous pyrolysis-activation-nitrogen doping of biomass: Synergistic mechanism of KOH and NH3. Renewable Energy, 229, 120777. https://doi.org/https://doi.org/10.1016/j.renene.2024.120777

Wijitkosum, S. (2023). Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application. In Energies (Vol. 16, Issue 2). https://doi.org/10.3390/en16020771

Yang, H., Huan, B., Chen, Y., Gao, Y., Li, J., & Chen, H. (2016). Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism. Energy & Fuels, 30(8), 6430–6439. https://doi.org/10.1021/acs.energyfuels.6b00732

Zhang, G., Feng, Q., Hu, J., Sun, G., Evrendilek, F., Liu, H., & Liu, J. (2022). Science of the Total Environment Performance and mechanism of bamboo residues pyrolysis : Gas emissions , by-products , and reaction kinetics. Science of the Total Environment, 838(June), 156560. https://doi.org/10.1016/j.scitotenv.2022.156560

Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., & Xia, C. (2023). A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel, 347, 128461. https://doi.org/https://doi.org/10.1016/j.fuel.2023.128461




DOI: https://doi.org/10.31315/eksergi.v22i1.14128

Refbacks

  • There are currently no refbacks.

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Eksergi p-ISSN  1410-394X, e-ISSN 2460-8203,  is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".

Contact  Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta

 

 Creative Commons License

Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 

 

Lihat Statistik Jurnal Kami

slot gacor slot gacor hari ini slot gacor 2025 demo slot pg slot gacor slot gacor