Effect of Temperature and N-Doping on the Distribution of Bamboo Waste Pyrolysis Products Using Quartz Tube Furnace
Abstract
Keywords
Full Text:
PDFReferences
A Aladin, B Modding, T. S. and F. C. D. (2020). Effect of nitrogen gas flowing continuously into the pyrolysis reactor for simultaneous production of charcoal and liquid smoke. The 2-Nd International Seminar on Science and Technology (ISST-2), 1–5. https://doi.org/10.1088/1742-6596/1763/1/012020
Aini, N., Mufandi, I., Jamilatun, S., & Rahayu, A. (2023). Exploring Cacao Husk Waste – Surface Modification, Characterization, and its Potential for Removing Phosphate and Nitrate Ions. Journal of Ecological Engineering, 24(12), 282–292. https://doi.org/10.12911/22998993/17400
Chaturvedi, K., Singhwane, A., Dhangar, M., Mili, M., Gorhae, N., Naik, A., Prashant, N., Srivastava, A. K., & Verma, S. (2024). Bamboo for producing charcoal and biochar for versatile applications. Biomass Conversion and Biorefinery, 14(14), 15159–15185. https://doi.org/10.1007/s13399-022-03715-3
Chaudhary, U., Malik, S., Rana, V., & Joshi, G. (2024). Bamboo in the pulp, paper and allied industries. Advances in Bamboo Science, 7, 100069. https://doi.org/https://doi.org/10.1016/j.bamboo.2024.100069
Chen, W., Yang, H., Chen, Y., Chen, X., Fang, Y., & Chen, H. (2016). Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. Journal of Analytical and Applied Pyrolysis, 120, 186–193. https://doi.org/https://doi.org/10.1016/j.jaap.2016.05.004
Deng, W., Zhang, Y., Hu, M., Wang, R., & Su, Y. (2025). Optimization of nitrogen-doped sludge char preparation and mechanism study for catalytic oxidation of NO at room temperature. Journal of Environmental Sciences, 150, 503–514. https://doi.org/https://doi.org/10.1016/j.jes.2023.11.025
Gautam, N., & Chaurasia, A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process. Energy, 190, 116434. https://doi.org/https://doi.org/10.1016/j.energy.2019.116434
Hu, J., Yan, Y., Evrendilek, F., Buyukada, M., & Liu, J. (2019). Combustion behaviors of three bamboo residues: Gas emission, kinetic, reaction mechanism and optimization patterns. Journal of Cleaner Production, 235, 549–561. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.06.324
Jamilatun, S., Aktawan, A., Budiman, A., & Mufandi, I. (2022). Thermogravimetric analysis kinetic study of Spirulina platensis residue pyrolysis. IOP Conference Series: Earth and Environmental Science, 963(1). https://doi.org/10.1088/1755-1315/963/1/012010
Jamilatun, Siti, Budhijanto, Rochmadi, & Budiman, A. (2017). Thermal decomposition and kinetic studies of pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Development, 6(3), 193–201. https://doi.org/10.14710/ijred.6.3.193-201
Jamilatun, Siti, Mufandi, I., Evitasari, R. T., & Budiman, A. (2020). Effects of temperature and catalysts on the yield of bio-oil during the pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Research, 10(2), 678–686.
Jamilatun, Siti, Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566
Jerzak, W., Acha, E., & Li, B. (2024). Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis. In Energies (Vol. 17, Issue 20). https://doi.org/10.3390/en17205082
Kasera, N., Kolar, P., & Hall, S. G. (2022). Nitrogen-doped biochars as adsorbents for mitigation of heavy metals and organics from water: a review. Biochar, 4(1), 17. https://doi.org/10.1007/s42773-022-00145-2
Kryshtopa, S., Kryshtopa, L., Panchuk, M., Smigins, R., & Dolishnii, B. (2021). Composition and energy value research of pyrolise gases. IOP Conference Series: Earth and Environmental Science, 628(1), 12008. https://doi.org/10.1088/1755-1315/628/1/012008
Liang, Z., Neményi, A., Kovács, G. P., & Gyuricza, C. (2023). Potential use of bamboo resources in energy value-added conversion technology and energy systems. GCB Bioenergy, 15(8), 936–953. https://doi.org/https://doi.org/10.1111/gcbb.13072
Linh, H. C. T. (2024). Application of Bamboo Materials in the Field of Interior Architecture Design - Modern Landscape. In C. Ha-Minh, C. H. Pham, H. T. H. Vu, & D. V. K. Huynh (Eds.), 7th International Conference on Geotechnics, Civil Engineering and Structures, CIGOS 2024, 4-5 April, Ho Chi Minh City, Vietnam (pp. 132–140). Springer Nature Singapore.
Mufandi, I., Suntivarakorn, R., Treedet, W., & Singbua, P. (2023). Analisis Termogravimetri dan Dekomposisi Termal pada Produksi Bio-Oil dari Daun Tebu Menggunakan Proses Pirolisis Cepat. Eksergi, 20(2), 82. https://doi.org/10.31315/e.v20i2.9849
Mufandi, I., Treedet, W., Singbua, P., & Suntivarakorn, R. (2020). Efficiency of Bio - oil Production from Napier Grass Using Circulating Fluidized Bed Reactor with Bio - oil Scrubber. KKU Research Journal, 20(December), 94–107.
Nan, H., Xiao, Z., Zhao, L., Yang, F., Xu, H., Xu, X., & Qiu, H. (2020). Nitrogen Transformation during Pyrolysis of Various N-Containing Biowastes with Participation of Mineral Calcium. ACS Sustainable Chemistry & Engineering, 8(32), 12197–12207. https://doi.org/10.1021/acssuschemeng.0c03773
Qian, K., Kumar, A., Zhang, H., Bellmer, D., & Huhnke, R. (2015). Recent advances in utilization of biochar. Renewable and Sustainable Energy Reviews, 42, 1055–1064. https://doi.org/https://doi.org/10.1016/j.rser.2014.10.074
Rashmi Sarmah, R., & Neog, D. (2024). Bamboo as a Potential Eco-Friendly Composite – A Review. Journal of Physics: Conference Series, 2818(1), 12031. https://doi.org/10.1088/1742-6596/2818/1/012031
Somerville, M., & Deev, A. (2020). The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood. Renewable Energy, 151, 419–425. https://doi.org/10.1016/j.renene.2019.11.036
Tong, W., Cai, Z., Liu, Q., Ren, S., & Kong, M. (2020). Effect of pyrolysis temperature on bamboo char combustion: Reactivity, kinetics and thermodynamics. Energy, 211, 118736. https://doi.org/10.1016/j.energy.2020.118736
Treedet, W., Suntivarakorn, R., Mufandi, I., & Singbua, P. (2020). Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels. International Energy Journal, 20(2), 155–168.
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/https://doi.org/10.1016/j.rser.2015.10.122
Vamkuka, D. (2012). Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes—An overview. International Journal of Energy Research, 33(4), 23–40. https://doi.org/10.1002/er
Vuppaladadiyam, A. K., Varsha Vuppaladadiyam, S. S., Sikarwar, V. S., Ahmad, E., Pant, K. K., S, M., Pandey, A., Bhattacharya, S., Sarmah, A., & Leu, S.-Y. (2023). A critical review on biomass pyrolysis: Reaction mechanisms, process modeling and potential challenges. Journal of the Energy Institute, 108, 101236. https://doi.org/https://doi.org/10.1016/j.joei.2023.101236
Wang, J., Minami, E., Asmadi, M., & Kawamoto, H. (2021). Thermal degradation of hemicellulose and cellulose in ball-milled cedar and beech wood. Journal of Wood Science, 67(1), 32. https://doi.org/10.1186/s10086-021-01962-y
Wang, N., Chang, Z.-Z., Xue, X.-M., Yu, J.-G., Shi, X.-X., Ma, L. Q., & Li, H.-B. (2017). Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Science of The Total Environment, 581–582, 689–696. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.12.181
Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/https://doi.org/10.1016/j.pecs.2017.05.004
Wang, Yan, Yin, R., & Liu, R. (2014). Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. Journal of Analytical and Applied Pyrolysis, 110, 375–381. https://doi.org/https://doi.org/10.1016/j.jaap.2014.10.006
Wang, Yurou, Guo, W., Chen, W., Xu, G., Zhu, G., Xie, G., Xu, L., Dong, C., Gao, S., Chen, Y., Yang, H., Chen, H., & Fang, Z. (2024). Co-production of porous N-doped biochar and hydrogen-rich gas production from simultaneous pyrolysis-activation-nitrogen doping of biomass: Synergistic mechanism of KOH and NH3. Renewable Energy, 229, 120777. https://doi.org/https://doi.org/10.1016/j.renene.2024.120777
Wijitkosum, S. (2023). Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application. In Energies (Vol. 16, Issue 2). https://doi.org/10.3390/en16020771
Yang, H., Huan, B., Chen, Y., Gao, Y., Li, J., & Chen, H. (2016). Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism. Energy & Fuels, 30(8), 6430–6439. https://doi.org/10.1021/acs.energyfuels.6b00732
Zhang, G., Feng, Q., Hu, J., Sun, G., Evrendilek, F., Liu, H., & Liu, J. (2022). Science of the Total Environment Performance and mechanism of bamboo residues pyrolysis : Gas emissions , by-products , and reaction kinetics. Science of the Total Environment, 838(June), 156560. https://doi.org/10.1016/j.scitotenv.2022.156560
Zhang, Y., Liang, Y., Li, S., Yuan, Y., Zhang, D., Wu, Y., Xie, H., Brindhadevi, K., Pugazhendhi, A., & Xia, C. (2023). A review of biomass pyrolysis gas: Forming mechanisms, influencing parameters, and product application upgrades. Fuel, 347, 128461. https://doi.org/https://doi.org/10.1016/j.fuel.2023.128461
DOI: https://doi.org/10.31315/eksergi.v22i1.14128
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.