Penghilangan Kadar Klorine pada Precipitate Calcium Carbonate (PCC) dengan Proses Pencucian dan Filtrasi
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Abeywardena, M. R., Elkaduwe, R. K. W. H. M. K., Karunarathne, D. G. G. P., Pitawala, H. M. T. G. A., Rajapakse, R. M. G., Manipura, A., & Mantilaka, M. M. M. G. P. G. (2020). Surfactant assisted synthesis of precipitated calcium carbonate nanoparticles using dolomite: Effect of pH on morphology and particle size. Advanced Powder Technology, 31(1), 269–278. https://doi.org/10.1016/j.apt.2019.10.018
Al, M., Reo, R., Si, S., Whiny, R., & Erliana, H. (2022). Otomasi Continuous Pilot Plant , Market Trial , dan Simulasi Skala Demo Plant Pemanfaatan CO2 Menjadi Precipitated Calcium Carbonate LAPORAN TAHAP III MARET 2022 Otomasi Continuous Pilot Plant , Market Trial , dan Simulasi Skala Demo Plant Pemanfaatan CO2.
Altiner, M., Top, S., & Kaymakoğlu, B. (2021). Ultrasonic-assisted production of precipitated calcium carbonate particles from desulfurization gypsum. Ultrasonics Sonochemistry, 72. https://doi.org/10.1016/j.ultsonch.2020.105421
Altiner, M., Top, S., Kaymakoǧlu, B., Seçkin, I. Y., & Vapur, H. (2019). Production of precipitated calcium carbonate particles from gypsum waste using venturi tubes as a carbonation zone. Journal of CO2 Utilization, 29(December 2018), 117–125. https://doi.org/10.1016/j.jcou.2018.12.004
Altiner, M., & Yildirim, M. (2017). Production of precipitated calcium carbonate particles with different morphologies from dolomite ore in the presence of various hydroxide additives. Physicochemical Problems of Mineral Processing, 53(1), 413–426. https://doi.org/10.5277/ppmp170133
Desmiarti, R., Sari, E., Firdaus, F., Desfitri, E., Amir, A., Salsabil, I., Rosadi, M., & Naldi, N. (2022). The Effect of Calcination Temperature on The Quality of Quicklime from Different Limestone Mines in West Sumatera, Indonesia. Journal of Applied Agricultural Science and Technology, 6(1), 41–48. https://doi.org/10.55043/jaast.v6i1.44
El-Sheikh, S. M., El-Sherbiny, S., Barhoum, A., & Deng, Y. (2013). Effects of cationic surfactant during the precipitation of calcium carbonate nano-particles on their size, morphology, and other characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 422, 44–49. https://doi.org/10.1016/j.colsurfa.2013.01.020
F, M., M, A., & L, K. M. (2020). The effect of Ca ( OH ) 2 slurry concentration on precipitated CaCO 3 product The Effect of Ca ( OH ) 2 Slurry Concentration on Precipitated. 020017(December 2019).
Farrag, N. M., Bayoumi, R. A., & Mohamed, T. A. (2022). Factorial analysis of nano-precipitated calcium carbonate via a carbonation route using Solvay wastewater. Case Studies in Chemical and Environmental Engineering, 6(July), 100236. https://doi.org/10.1016/j.cscee.2022.100236
Huang, S. C., Naka, K., & Chujo, Y. (2007). A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s. Langmuir, 23(24), 12086–12095. https://doi.org/10.1021/la701972n
Laukala, T., Kronlund, D., Heiskanen, I., & Backfolk, K. (2017). The effect of polyacrylic acid and reaction conditions on nanocluster formation of precipitated calcium carbonate on microcellulose. Cellulose, 24(7), 2813–2826. https://doi.org/10.1007/s10570-017-1296-8
Pusparizkita, Y. M., Schmahl, W. W., Ambarita, M., Kholid, H. N., Sadewa, A. Y., Ismail, R., Jamari, J., & Bayuseno, A. P. (2023). Mineralizing CO2 and producing polymorphic calcium carbonates from bitumen-rock asphalt manufacturing solid residues. Cleaner Engineering and Technology, 12(October 2022), 100602. https://doi.org/10.1016/j.clet.2023.100602
Sari, E., Desmiarti, R., Arief, S., Rosadi, Y., Naldi, N., & Hutagaol, H. A. (2022). International Journal of Applied Science and Engineering Synthesis of precipitated calcium carbonate with the addition of aloe vera extract under different reaction temperatures. 20(1), 1–7.
Sarkar, A., & Mahapatra, S. (2010). Synthesis of all crystalline phases of anhydrous calcium carbonate. Crystal Growth and Design, 10(5), 2129–2135. https://doi.org/10.1021/cg9012813
Shirsath, S. R., Sonawane, S. H., Saini, D. R., & Pandit, A. B. (2015). Continuous precipitation of calcium carbonate using sonochemical reactor. Ultrasonics Sonochemistry, 24, 132–139. https://doi.org/10.1016/j.ultsonch.2014.12.003
Song, X., Zhang, L., Cao, Y., Zhu, J., & Luo, X. (2020). Effect of pH and temperatures on the fast precipitation vaterite particle size and polymorph stability without additives by steamed ammonia liquid waste. Powder Technology, 374, 263–273. https://doi.org/10.1016/j.powtec.2020.07.029
Supelco. (2022). Material Safety Data Sheet Calcium Oxide. Material Safety Data Sheet, Kategori 3, 1–10.
Tamm, K., Kallas, J., Kuusik, R., & Uibu, M. (2017). Modelling Continuous Process for Precipitated Calcium Carbonate Production from Oil Shale Ash. Energy Procedia, 114(November 2016), 5409–5416. https://doi.org/10.1016/j.egypro.2017.03.1685
Teir, S., Auvinen, T., Said, A., Kotiranta, T., & Peltola, H. (2016). Performance of separation processes for precipitated calcium carbonate produced with an innovative method from steelmaking slag and carbon dioxide. In Frontiers in Energy Research (Vol. 4, Issue FEB). https://doi.org/10.3389/fenrg.2016.00006
Teir, S., Kotiranta, T., Pakarinen, J., & Mattila, H. P. (2016). Case study for production of calcium carbonate from carbon dioxide in flue gases and steelmaking slag. Journal of CO2 Utilization, 14, 37–46. https://doi.org/10.1016/j.jcou.2016.02.004
Wu, J. L., Wang, C. Q., Zhuo, R. X., & Cheng, S. X. (2014). Multi-drug delivery system based on alginate/calcium carbonate hybrid nanoparticles for combination chemotherapy. Colloids and Surfaces B: Biointerfaces, 123, 498–505. https://doi.org/10.1016/j.colsurfb.2014.09.047
Yang, A., Huang, Z., Zhu, Y., Han, Y., & Tong, Z. (2021). Preparation of nano-sized calcium carbonate in solution mixing process. Journal of Crystal Growth, 571(29), 126247. https://doi.org/10.1016/j.jcrysgro.2021.126247
Zhang, Y., Qiao, L., Yan, H., Zizak, I., Zaslansky, P., Li, Y., Qi, L., & Ma, Y. (2020). Vaterite Microdisc Mesocrystals Exposing the (001) Facet Formed via Transformation from Proto-Vaterite Amorphous Calcium Carbonate. Crystal Growth and Design, 20(5), 3482–3492. https://doi.org/10.1021/acs.cgd.0c00259
DOI: https://doi.org/10.31315/e.v20i3.9684
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.