Thermogravimetric Analysis and Thermal Decomposition of Bio-Oil Production from Sugarcane Leaves Using Fast Pyrolysis Process
Abstract
Keywords
Full Text:
PDF (Bahasa Indonesia)References
Akoueson, F., Chbib, C., Monchy, S., Paul-Pont, I., Doyen, P., Dehaut, A., & Duflos, G. (2021). Identification and quantification of plastic additives using pyrolysis-GC/MS: A review. Science of the Total Environment, 773. https://doi.org/10.1016/j.scitotenv.2021.145073.
Alves, J. L. F., da Silva, J. C. G., Mumbach, G. D., Domenico, M. Di, Bolzan, A., Machado, R. A. F., & Marangoni, C. (2022). Evaluating the bioenergy potential of cupuassu shell through pyrolysis kinetics, thermodynamic parameters of activation, and evolved gas analysis with TG/FTIR technique. Thermochimica Acta, 711, 723–739. https://doi.org/10.1016/j.tca.2022.179187
Bach, Q. V., & Chen, W. H. (2017). Pyrolysis characteristics and kinetics of microalgae via thermogravimetric analysis (TGA): A state-of-the-art review. Bioresource Technology, 246, 88–100. https://doi.org/10.1016/j.biortech.2017.06.087
Branca, C., & Di Blasi, C. (2015). Thermogravimetric analysis of the combustion of dry distiller’s grains with solubles (DDGS) and pyrolysis char under kinetic control. Fuel Processing Technology, 129, 67–74. https://doi.org/10.1016/j.fuproc.2014.08.019
Cavalcanti, E. J. C., Carvalho, M., & da Silva, D. R. S. (2020). Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system. Energy Conversion and Management, 222. https://doi.org/10.1016/j.enconman.2020.113232
de Almeida, S. G. C., Tarelho, L. A. C., Hauschild, T., Costa, M. A. M., & Dussán, K. J. (2022). Biochar production from sugarcane biomass using slow pyrolysis: Characterization of the solid fraction. Chemical Engineering and Processing - Process Intensification, 179(February). https://doi.org/10.1016/j.cep.2022.109054
Dhyani, V., Kumar, J., & Bhaskar, T. (2017). Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresource Technology, 245(September), 1122–1129. https://doi.org/10.1016/j.biortech.2017.08.189
Fries, E., Dekiff, J. H., Willmeyer, J., Nuelle, M. T., Ebert, M., & Remy, D. (2013). Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environmental Sciences: Processes and Impacts, 15(10), 1949–1956. https://doi.org/10.1039/c3em00214d.
Jamilatun, S., Aktawan, A., Budiman, A., & Mufandi, I. (2022). Thermogravimetric analysis kinetic study of Spirulina platensis residue pyrolysis. IOP Conference Series: Earth and Environmental Science, 963(1). https://doi.org/10.1088/1755-1315/963/1/012010.
Jamilatun, Siti, Mufandi, I., Evitasari, R. T., & Budiman, A. (2020). Effects of temperature and catalysts on the yield of bio-oil during the pyrolysis of Spirulina platensis residue. International Journal of Renewable Energy Research, 10(2), 678–686.
Jamilatun, Siti, Pitoyo, J., Amelia, S., Ma’arif, A., Hakika, D. C., & Mufandi, I. (2022). Experimental Study on The Characterization of Pyrolysis Products from Bagasse (Saccharum Officinarum L.): Bio-oil, Biochar, and Gas Products. Indonesian Journal of Science and Technology, 7(3), 565–582. https://doi.org/10.17509/ijost.v7i3.51566.
Kan, T., Strezov, V., & Evans, T. (2016). Effect of the Heating Rate on the Thermochemical Behavior and Biofuel Properties of Sewage Sludge Pyrolysis. Energy and Fuels, 30(3), 1564–1570. https://doi.org/10.1021/acs.energyfuels.5b02232.
Mishra, G., Kumar, J., & Bhaskar, T. (2015). Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182, 282–288. https://doi.org/10.1016/j.biortech.2015.01.087.
Mishra, R. K., & Mohanty, K. (2020). Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential. Bioresource Technology, 311(May), 123480. https://doi.org/10.1016/j.biortech.2020.123480.
Moralı, U., Yavuzel, N., & Şensöz, S. (2016). Pyrolysis of hornbeam (Carpinus betulus L.) sawdust: Characterization of bio-oil and bio-char. Bioresource Technology, 221, 682–685. https://doi.org/10.1016/j.biortech.2016.09.081.
Mufandi, I., Treedet, W., Singbua, P., & Suntivarakorn, R. (2020). Efficiency of Bio - oil Production from Napier Grass Using Circulating Fluidized Bed Reactor with Bio - oil Scrubber. KKU Research Journal, 20(December), 94–107.
Naqvi, S. R., Tariq, R., Shahbaz, M., Naqvi, M., Aslam, M., Khan, Z., Mackey, H., Mckay, G., & Al-Ansari, T. (2021). Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Computers and Chemical Engineering, 150, 107325. https://doi.org/10.1016/j.compchemeng.2021.107325.
Ren, S., Ye, X. P., Borole, A. P., Kim, P., & Labbé, N. (2016). Analysis of switchgrass-derived bio-oil and associated aqueous phase generated in a semi-pilot scale auger pyrolyzer. Journal of Analytical and Applied Pyrolysis, 119, 97–103. https://doi.org/10.1016/j.jaap.2016.03.013.
Strezov, V., Evans, T. J., & Hayman, C. (2008). Thermal conversion of elephant grass (Pennisetum Purpureum Schum) to bio-gas, bio-oil and charcoal. Bioresource Technology, 99(17), 8394–8399. https://doi.org/10.1016/j.biortech.2008.02.039.
Sugumaran, V., Prakash, S., Ramu, E., Arora, A. K., Bansal, V., Kagdiyal, V., & Saxena, D. (2017). Detailed characterization of bio-oil from pyrolysis of non-edible seed-cakes by Fourier Transform Infrared Spectroscopy (FTIR) and gas chromatography mass spectrometry (GC–MS) techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1058(January), 47–56. https://doi.org/10.1016/j.jchromb.2017.05.014.
Suntivarakorn, R., & Treedet, W. (2016). Improvement of Boiler’s Efficiency Using Heat Recovery and Automatic Combustion Control System. Energy Procedia, 100(September), 193–197. https://doi.org/10.1016/j.egypro.2016.10.164.
Treedet, W., Suntivarakorn, R., Mufandi, I., & Singbua, P. (2020). Bio-oil production from Napier grass using a pyrolysis process: Comparison of energy conversion and production cost between bio-oil and other biofuels. International Energy Journal, 20(2), 155–168.
DOI: https://doi.org/10.31315/e.v20i2.9849
Refbacks
- There are currently no refbacks.
Article Metrics
Metrics powered by PLOS ALM
Eksergi p-ISSN 1410-394X, e-ISSN 2460-8203, is published by "Prodi Teknik Kimia UPN Veteran Yogyakarta".
Contact Jl. SWK 104 (Lingkar Utara) Condong catur Sleman Yogyakarta
Eksergi by http://jurnal.upnyk.ac.id/index.php/eksergi/index/ is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.